some fun with testAll.

This commit is contained in:
Quinn Dougherty 2022-04-06 22:24:00 -04:00
parent 6b15698d4e
commit 45c6eec7da
4 changed files with 202 additions and 144 deletions

View File

@ -1,8 +1,5 @@
open Jest
open Expect
open FastCheck
// open Arbitrary
open Property.Sync
let env: DistributionOperation.env = {
sampleCount: 100,
@ -11,8 +8,6 @@ let env: DistributionOperation.env = {
let mkNormal = (mean, stdev) => GenericDist_Types.Symbolic(#Normal({mean: mean, stdev: stdev}))
let normalDist5: GenericDist_Types.genericDist = mkNormal(5.0, 2.0)
let normalDist10: GenericDist_Types.genericDist = mkNormal(10.0, 2.0)
let normalDist20: GenericDist_Types.genericDist = mkNormal(20.0, 2.0)
let uniformDist: GenericDist_Types.genericDist = Symbolic(#Uniform({low: 9.0, high: 10.0}))
let {toFloat, toDist, toString, toError} = module(DistributionOperation.Output)
@ -23,112 +18,6 @@ let outputMap = fmap(~env)
let toExt: option<'a> => 'a = E.O.toExt(
"Should be impossible to reach (This error is in test file)",
)
let unpackFloat = x => x -> toFloat -> toExt
describe("normalize", () => {
test("has no impact on normal dist", () => {
let result = run(FromDist(ToDist(Normalize), normalDist5))
expect(result)->toEqual(Dist(normalDist5))
})
// Test is vapid while I figure out how to get jest to work with fast-check
// monitor situation here maybe https://github.com/TheSpyder/rescript-fast-check/issues/8 ?
test("all normals are already normalized", () => {
expect(assert_(
property2(
Arbitrary.double(()),
Arbitrary.double(()),
(mean, stdev) => {
// open! Expect.Operators
open GenericDist_Types.Operation
run(FromDist(ToDist(Normalize), mkNormal(mean, stdev))) == DistributionOperation.Dist(mkNormal(mean, stdev))
}
)
)) -> toEqual(())
})
})
describe("mean", () => {
test("of a normal distribution", () => { // should be property
run(FromDist(ToFloat(#Mean), normalDist5)) -> unpackFloat -> expect -> toBeCloseTo(5.0)
})
test("of an exponential distribution at a small rate", () => { // should be property
let rate = 1e-7
let theMean = run(FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Exponential({rate: rate}))))
theMean -> unpackFloat -> expect -> toBeCloseTo(1.0 /. rate) // https://en.wikipedia.org/wiki/Exponential_distribution#Mean,_variance,_moments,_and_median
})
test("of an exponential distribution at a larger rate", () => {
let rate = 10.0
let theMean = run(FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Exponential({rate: rate}))))
theMean -> unpackFloat -> expect -> toBeCloseTo(1.0 /. rate) // https://en.wikipedia.org/wiki/Exponential_distribution#Mean,_variance,_moments,_and_median
})
// test("of a cauchy distribution", () => {
// let result = run(FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Cauchy({local: 1.0, scale: 1.0}))))
// expect(result) -> toEqual(Error("Cauchy distributions may have no mean value."))
// })
test("of a triangular distribution", () => { // should be property
let theMean = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Triangular({low: - 5.0, medium: 1e-3, high: 10.0}))
))
theMean -> unpackFloat -> expect -> toBeCloseTo((-5.0 +. 1e-3 +. 10.0) /. 3.0) // https://www.statology.org/triangular-distribution/
})
test("of a beta distribution with alpha much smaller than beta", () => { // should be property
let theMean = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Beta({alpha: 2e-4, beta: 64.0}))
))
theMean -> unpackFloat -> expect -> toBeCloseTo(1.0 /. (1.0 +. (64.0 /. 2e-4))) // https://en.wikipedia.org/wiki/Beta_distribution#Mean
})
test("of a beta distribution with alpha much larger than beta", () => { // should be property
let theMean = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Beta({alpha: 128.0, beta: 1.0}))
))
theMean -> unpackFloat -> expect -> toBeCloseTo(1.0 /. (1.0 +. (1.0 /. 128.0))) // https://en.wikipedia.org/wiki/Beta_distribution#Mean
})
test("of a lognormal", () => { // should be property
let theMean = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Lognormal({mu: 2.0, sigma: 4.0}))
))
theMean -> unpackFloat -> expect -> toBeCloseTo(Js.Math.exp(2.0 +. 4.0 ** 2.0 /. 2.0 )) // https://brilliant.org/wiki/log-normal-distribution/
})
test("of a uniform", () => {
let theMean = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Uniform({low: 1e-5, high: 12.345}))
))
theMean -> unpackFloat -> expect -> toBeCloseTo((1e-5 +. 12.345) /. 2.0) // https://en.wikipedia.org/wiki/Continuous_uniform_distribution#Moments
})
test("of a float", () => {
let theMean = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Float(7.7))
))
theMean -> unpackFloat -> expect -> toBeCloseTo(7.7)
})
})
describe("mixture", () => {
test("on two normal distributions", () => {
let result =
run(Mixture([(normalDist10, 0.5), (normalDist20, 0.5)]))
->outputMap(FromDist(ToFloat(#Mean)))
->toFloat
->toExt
expect(result)->toBeCloseTo(15.28)
})
})
describe("toPointSet", () => {
test("on symbolic normal distribution", () => {

View File

@ -0,0 +1,57 @@
open Jest
open Expect
let env: DistributionOperation.env = {
sampleCount: 1000,
xyPointLength: 100,
}
let {toFloat, toDist, toString, toError} = module(DistributionOperation.Output)
let {run} = module(DistributionOperation)
let {fmap} = module(DistributionOperation.Output)
let run = run(~env)
let outputMap = fmap(~env)
let toExt: option<'a> => 'a = E.O.toExt(
"Should be impossible to reach (This error is in test file)",
)
let unpackFloat = x => x -> toFloat -> toExt
let mkNormal = (mean, stdev) => GenericDist_Types.Symbolic(#Normal({mean: mean, stdev: stdev}))
let mkBeta = (alpha, beta) => GenericDist_Types.Symbolic(#Beta({alpha: alpha, beta: beta}))
let mkExponential = rate => GenericDist_Types.Symbolic(#Exponential({rate: rate}))
describe("mixture", () => {
testAll("fair mean of two normal distributions", list{(0.0, 1e2), (-1e1, -1e-4), (-1e1, 1e2), (-1e1, 1e1)}, tup => { // should be property
let (mean1, mean2) = tup
let theMean = {
run(Mixture([(mkNormal(mean1, 9e-1), 0.5), (mkNormal(mean2, 9e-1), 0.5)]))
-> outputMap(FromDist(ToFloat(#Mean)))
}
theMean -> unpackFloat -> expect -> toBeSoCloseTo((mean1 +. mean2) /. 2.0, ~digits=-1) // the .56 is arbitrary? should be 15.0 with a looser tolerance?
})
testAll(
"weighted mean of a beta and an exponential",
// This would not survive property testing, it was easy for me to find cases that NaN'd out.
list{((128.0, 1.0), 2.0), ((2e-1, 64.0), 16.0), ((1e0, 1e0), 64.0)},
tup => {
let (betaParams, rate) = tup
let (alpha, beta) = betaParams
let theMean = {
run(Mixture(
[
(mkBeta(alpha, beta), 0.25),
(mkExponential(rate), 0.75)
]
)) -> outputMap(FromDist(ToFloat(#Mean)))
}
theMean
-> unpackFloat
-> expect
-> toBeSoCloseTo(
0.25 *. 1.0 /. (1.0 +. beta /. alpha) +. 0.75 *. 1.0 /. rate,
~digits=-1
)
}
)
})

View File

@ -0,0 +1,145 @@
open Jest
open Expect
let pdfImage = (thePdf, inps) => Js.Array.map(thePdf, inps)
let env: DistributionOperation.env = {
sampleCount: 100,
xyPointLength: 100,
}
let mkNormal = (mean, stdev) => GenericDist_Types.Symbolic(#Normal({mean: mean, stdev: stdev}))
let {toFloat, toDist, toString, toError, fmap} = module(DistributionOperation.Output)
let {run} = module(DistributionOperation)
let run = run(~env)
let outputMap = fmap(~env)
let toExtFloat: option<float> => float = E.O.toExt(
"Should be impossible to reach (This error is in test file)",
)
let toExtDist: option<GenericDist_Types.genericDist> => GenericDist_Types.genericDist = E.O.toExt(
"Should be impossible to reach (This error is in a test file)",
)
let unpackFloat = x => x -> toFloat -> toExtFloat
let unpackDist = y => y -> toDist -> toExtDist
describe("normalize", () => {
testAll("has no impact on normal distributions", list{-1e8, -16.0, -1e-2, 0.0, 1e-4, 32.0, 1e16}, mean => {
let theNormal = mkNormal(mean, 2.0)
let theNormalized = run(FromDist(ToDist(Normalize), theNormal))
theNormalized
-> unpackDist
-> expect
-> toEqual(theNormal)
})
})
describe("mean", () => {
testAll("of normal distributions", list{-1e8, -16.0, -1e-2, 0.0, 1e-4, 32.0, 1e16}, mean => {
run(FromDist(ToFloat(#Mean), mkNormal(mean, 4.0)))
-> unpackFloat
-> expect
-> toBeCloseTo(mean)
})
testAll("of exponential distributions", list{1e-7, 2.0, 10.0, 100.0}, rate => {
let theMean = run(FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Exponential({rate: rate}))))
theMean -> unpackFloat -> expect -> toBeCloseTo(1.0 /. rate) // https://en.wikipedia.org/wiki/Exponential_distribution#Mean,_variance,_moments,_and_median
})
// test("of a cauchy distribution", () => {
// let result = run(FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Cauchy({local: 1.0, scale: 1.0}))))
// expect(result) -> toEqual(Error("Cauchy distributions may have no mean value."))
// })
test("of a triangular distribution", () => { // should be property
let theMean = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Triangular({low: - 5.0, medium: 1e-3, high: 10.0}))
))
theMean
-> unpackFloat
-> expect
-> toBeCloseTo((-5.0 +. 1e-3 +. 10.0) /. 3.0) // https://www.statology.org/triangular-distribution/
})
test("of a beta distribution with alpha much smaller than beta", () => { // should be property
let theMean = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Beta({alpha: 2e-4, beta: 64.0}))
))
theMean
-> unpackFloat
-> expect
-> toBeCloseTo(1.0 /. (1.0 +. (64.0 /. 2e-4))) // https://en.wikipedia.org/wiki/Beta_distribution#Mean
})
test("of a beta distribution with alpha much larger than beta", () => { // should be property
let theMean = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Beta({alpha: 128.0, beta: 1.0}))
))
theMean
-> unpackFloat
-> expect
-> toBeCloseTo(1.0 /. (1.0 +. (1.0 /. 128.0))) // https://en.wikipedia.org/wiki/Beta_distribution#Mean
})
test("of a lognormal", () => { // should be property
let theMean = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Lognormal({mu: 2.0, sigma: 4.0}))
))
theMean
-> unpackFloat
-> expect
-> toBeCloseTo(Js.Math.exp(2.0 +. 4.0 ** 2.0 /. 2.0 )) // https://brilliant.org/wiki/log-normal-distribution/
})
test("of a uniform", () => {
let theMean = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Uniform({low: 1e-5, high: 12.345}))
))
theMean
-> unpackFloat
-> expect
-> toBeCloseTo((1e-5 +. 12.345) /. 2.0) // https://en.wikipedia.org/wiki/Continuous_uniform_distribution#Moments
})
test("of a float", () => {
let theMean = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Float(7.7))
))
theMean -> unpackFloat -> expect -> toBeCloseTo(7.7)
})
})
describe("Normal distribution with sparklines", () => {
let parameterWiseAdditionHelper = (n1: SymbolicDistTypes.normal, n2: SymbolicDistTypes.normal) => {
let normalDistAtSumMeanConstr = SymbolicDist.Normal.add(n1, n2)
let normalDistAtSumMean: SymbolicDistTypes.normal = switch normalDistAtSumMeanConstr {
| #Normal(params) => params
}
x => SymbolicDist.Normal.pdf(x, normalDistAtSumMean)
}
let normalDistAtMean5: SymbolicDistTypes.normal = {mean: 5.0, stdev: 2.0}
let normalDistAtMean10: SymbolicDistTypes.normal = {mean: 10.0, stdev: 2.0}
let range20Float = E.A.rangeFloat(0, 20) // [0.0,1.0,2.0,3.0,4.0,...19.0,]
let pdfNormalDistAtMean5 = x => SymbolicDist.Normal.pdf(x, normalDistAtMean5)
let sparklineMean5 = pdfImage(pdfNormalDistAtMean5, range20Float)
test("mean=5", () => {
Sparklines.create(sparklineMean5, ())
-> expect
-> toEqual(`▁▂▃▅███▅▃▂▁▁▁▁▁▁▁▁▁▁▁`)
})
let sparklineMean15 = normalDistAtMean5 -> parameterWiseAdditionHelper(normalDistAtMean10) -> pdfImage(range20Float)
test("parameter-wise addition of two normal distributions", () => {
Sparklines.create(sparklineMean15, ())
-> expect
-> toEqual(`▁▁▁▁▁▁▁▁▁▁▂▃▅▇███▇▅▃▂`)
})
})

View File

@ -1,33 +0,0 @@
open Jest
open Expect
open Js.Array
open SymbolicDist
let makeTest = (~only=false, str, item1, item2) =>
only
? Only.test(str, () => expect(item1) -> toEqual(item2))
: test(str, () => expect(item1) -> toEqual(item2))
let pdfImage = (thePdf, inps) => map(thePdf, inps)
let parameterWiseAdditionHelper = (n1: SymbolicDistTypes.normal, n2: SymbolicDistTypes.normal) => {
let normalDistAtSumMeanConstr = Normal.add(n1, n2)
let normalDistAtSumMean: SymbolicDistTypes.normal = switch normalDistAtSumMeanConstr {
| #Normal(params) => params
}
x => Normal.pdf(x, normalDistAtSumMean)
}
describe("Normal distribution with sparklines", () => {
let normalDistAtMean5: SymbolicDistTypes.normal = {mean: 5.0, stdev: 2.0}
let normalDistAtMean10: SymbolicDistTypes.normal = {mean: 10.0, stdev: 2.0}
let range20Float = E.A.rangeFloat(0, 20) // [0.0,1.0,2.0,3.0,4.0,...19.0,]
let pdfNormalDistAtMean5 = x => Normal.pdf(x, normalDistAtMean5)
let sparklineMean5 = pdfImage(pdfNormalDistAtMean5, range20Float)
makeTest("mean=5", Sparklines.create(sparklineMean5, ()), `▁▂▃▅███▅▃▂▁▁▁▁▁▁▁▁▁▁▁`)
let sparklineMean15 = normalDistAtMean5 -> parameterWiseAdditionHelper(normalDistAtMean10) -> pdfImage(range20Float)
makeTest("parameter-wise addition of two normal distributions", Sparklines.create(sparklineMean15, ()), `▁▁▁▁▁▁▁▁▁▁▂▃▅▇███▇▅▃▂`)
})