Experimental: continuous/discrete multiplication

This commit is contained in:
Sebastian Kosch 2020-07-08 19:18:20 -07:00
parent 2ddf0c02cb
commit 35048fec0d
3 changed files with 204 additions and 58 deletions

View File

@ -171,7 +171,7 @@ let make = () => {
~onSubmit=({state}) => {None},
~initialState={
//guesstimatorString: "mm(normal(-10, 2), uniform(18, 25), lognormal({mean: 10, stdev: 8}), triangular(31,40,50))",
guesstimatorString: "mm(normal(-5,1), normal(0, 1), normal(10, 1), normal(11, 1), normal(16, 1))", // , triangular(30, 40, 60)
guesstimatorString: "normal(0, 10) * 100", // , triangular(30, 40, 60)
domainType: "Complete",
xPoint: "50.0",
xPoint2: "60.0",

View File

@ -208,3 +208,175 @@ let combineShapesContinuousContinuous =
{xs: outputXs, ys: outputYs};
};
let toDiscretePointMassesFromDiscrete = (s: DistTypes.xyShape): pointMassesWithMoments => {
let n = s |> XYShape.T.length;
let {xs, ys}: XYShape.T.t = s;
let n = E.A.length(xs);
let masses: array(float) = Belt.Array.makeUninitializedUnsafe(n); // doesn't include the fake first and last points
let means: array(float) = Belt.Array.makeUninitializedUnsafe(n);
let variances: array(float) = Belt.Array.makeUninitializedUnsafe(n);
for (i in 0 to n - 1) {
let _ =
Belt.Array.set(
masses,
i,
ys[i]
);
let _ =
Belt.Array.set(
means,
i,
xs[i]
);
let _ =
Belt.Array.set(
variances,
i,
0.0
);
();
};
{n, masses, means, variances};
};
let combineShapesContinuousDiscreteAdd =
(op: ExpressionTypes.algebraicOperation, s1: DistTypes.xyShape, s2: DistTypes.xyShape)
: DistTypes.xyShape => {
let t1n = s1 |> XYShape.T.length;
let t2n = s2 |> XYShape.T.length;
// each x pair is added/subtracted
let fn = Operation.Algebraic.toFn(op);
let outXYShapes: array(array((float, float))) =
Belt.Array.makeUninitializedUnsafe(t2n);
for (j in 0 to t2n - 1) {
// for each one of the discrete points
// create a new distribution, as long as the original continuous one
let dxyShape: array((float, float)) =
Belt.Array.makeUninitializedUnsafe(t1n);
for (i in 0 to t1n - 1) {
let _ =
Belt.Array.set(
dxyShape,
i,
(fn(s1.xs[i], s2.xs[j]), s1.ys[i] *. s2.ys[j]),
);
();
};
let _ = Belt.Array.set(outXYShapes, j, dxyShape);
();
};
outXYShapes
|> E.A.fold_left(XYShape.PointwiseCombination.combineLinear((+.)), XYShape.T.empty);
};
let combineShapesContinuousDiscreteMultiply =
(op: ExpressionTypes.algebraicOperation, s1: DistTypes.xyShape, s2: DistTypes.xyShape)
: DistTypes.xyShape => {
let t1n = s1 |> XYShape.T.length;
let t2n = s2 |> XYShape.T.length;
let t1m = toDiscretePointMassesFromTriangulars(s1);
let t2m = toDiscretePointMassesFromDiscrete(s2);
let combineMeansFn =
switch (op) {
| `Add => ((m1, m2) => m1 +. m2)
| `Subtract => ((m1, m2) => m1 -. m2)
| `Multiply => ((m1, m2) => m1 *. m2)
| `Divide => ((m1, m2) => m1 /. m2)
};
let combineVariancesFn =
switch (op) {
| `Add
| `Subtract => ((v1, v2, _, _) => v1 +. v2)
| `Multiply
| `Divide => (
(v1, v2, m1, m2) => v1 *. m2 ** 2.
)
};
let outputMinX: ref(float) = ref(infinity);
let outputMaxX: ref(float) = ref(neg_infinity);
let masses: array(float) =
Belt.Array.makeUninitializedUnsafe(t1m.n * t2m.n);
let means: array(float) =
Belt.Array.makeUninitializedUnsafe(t1m.n * t2m.n);
let variances: array(float) =
Belt.Array.makeUninitializedUnsafe(t1m.n * t2m.n);
// then convolve the two sets of pointMassesWithMoments
for (i in 0 to t1m.n - 1) {
for (j in 0 to t2m.n - 1) {
let k = i * t2m.n + j;
let _ = Belt.Array.set(masses, k, t1m.masses[i] *. t2m.masses[j]);
let mean = combineMeansFn(t1m.means[i], t2m.means[j]);
let variance =
combineVariancesFn(
t1m.variances[i],
t2m.variances[j],
t1m.means[i],
t2m.means[j],
);
let _ = Belt.Array.set(means, k, mean);
let _ = Belt.Array.set(variances, k, variance);
// update bounds
let minX = mean -. 2. *. sqrt(variance) *. 1.644854;
let maxX = mean +. 2. *. sqrt(variance) *. 1.644854;
if (minX < outputMinX^) {
outputMinX := minX;
};
if (maxX > outputMaxX^) {
outputMaxX := maxX;
};
};
};
// we now want to create a set of target points. For now, let's just evenly distribute 200 points between
// between the outputMinX and outputMaxX
let nOut = 300;
let outputXs: array(float) = E.A.Floats.range(outputMinX^, outputMaxX^, nOut);
let outputYs: array(float) = Belt.Array.make(nOut, 0.0);
// now, for each of the outputYs, accumulate from a Gaussian kernel over each input point.
for (j in 0 to E.A.length(masses) - 1) { // go through all of the result points
let _ = if (variances[j] > 0. && masses[j] > 0.) {
for (i in 0 to E.A.length(outputXs) - 1) { // go through all of the target points
let dx = outputXs[i] -. means[j];
let contribution = masses[j] *. exp(-. (dx ** 2.) /. (2. *. variances[j])) /. (sqrt(2. *. 3.14159276 *. variances[j]));
let _ = Belt.Array.set(outputYs, i, outputYs[i] +. contribution);
();
};
();
};
();
};
{xs: outputXs, ys: outputYs};
};
let combineShapesContinuousDiscrete =
(op: ExpressionTypes.algebraicOperation, s1: DistTypes.xyShape, s2: DistTypes.xyShape)
: DistTypes.xyShape => {
switch (op) {
| `Add
| `Subtract => combineShapesContinuousDiscreteAdd(op, s1, s2);
| `Multiply
| `Divide => combineShapesContinuousDiscreteMultiply(op, s1, s2);
};
};

View File

@ -235,7 +235,7 @@ module Continuous = {
t
|> shapeMap(
XYShape.XsConversion.proportionByProbabilityMass(
length,
length,
integral(~cache, t).xyShape,
),
);
@ -280,60 +280,37 @@ module Continuous = {
each discrete data point, and then adds them all together. */
let combineAlgebraicallyWithDiscrete =
(
~downsample=false,
op: ExpressionTypes.algebraicOperation,
t1: t,
t2: DistTypes.discreteShape,
) => {
let t1s = t1 |> getShape;
let t2s = t2.xyShape; // would like to use Discrete.getShape here, but current file structure doesn't allow for that
let t1n = t1s |> XYShape.T.length;
let t2n = t2s |> XYShape.T.length;
let fn = Operation.Algebraic.toFn(op);
let outXYShapes: array(array((float, float))) =
Belt.Array.makeUninitializedUnsafe(t2n);
for (j in 0 to t2n - 1) {
// for each one of the discrete points
// create a new distribution, as long as the original continuous one
let dxyShape: array((float, float)) =
Belt.Array.makeUninitializedUnsafe(t1n);
for (i in 0 to t1n - 1) {
let _ =
Belt.Array.set(
dxyShape,
i,
(fn(t1s.xs[i], t2s.xs[j]), t1s.ys[i] *. t2s.ys[j]),
);
();
};
let _ = Belt.Array.set(outXYShapes, j, dxyShape);
();
let s1 = t1 |> getShape;
let s2 = t2.xyShape;
let t1n = s1 |> XYShape.T.length;
let t2n = s2 |> XYShape.T.length;
if (t1n == 0 || t2n == 0) {
empty;
} else {
let combinedShape =
AlgebraicShapeCombination.combineShapesContinuousDiscrete(
op,
s1,
s2,
);
let combinedIntegralSum =
Common.combineIntegralSums(
(a, b) => Some(a *. b),
t1.knownIntegralSum,
t2.knownIntegralSum,
);
// return a new Continuous distribution
make(`Linear, combinedShape, combinedIntegralSum);
};
let combinedIntegralSum =
Common.combineIntegralSums(
(a, b) => Some(a *. b),
t1.knownIntegralSum,
t2.knownIntegralSum,
);
outXYShapes
|> E.A.fmap(s => {
let xyShape = XYShape.T.fromZippedArray(s);
make(`Linear, xyShape, None);
})
|> reduce((+.))
|> updateKnownIntegralSum(combinedIntegralSum);
};
let combineAlgebraically =
(
~downsample=false,
op: ExpressionTypes.algebraicOperation,
t1: t,
t2: t,
@ -475,6 +452,7 @@ module Discrete = {
type integral = DistTypes.continuousShape;
let integral = (~cache, t) =>
if (t |> getShape |> XYShape.T.length > 0) {
Js.log2("Integrating discrete shape", XYShape.T.accumulateYs((+.), getShape(t)));
switch (cache) {
| Some(c) => c
| None =>
@ -849,7 +827,6 @@ module Mixed = {
let combineAlgebraically =
(
~downsample=false,
op: ExpressionTypes.algebraicOperation,
t1: t,
t2: t,
@ -861,33 +838,31 @@ module Mixed = {
// An alternative (to be explored in the future) may be to first perform the full convolution and then to downsample the result;
// to use non-uniform fast Fourier transforms (for addition only), add web workers or gpu.js, etc. ...
let downsampleIfTooLarge = (t: t) => {
let sqtl = sqrt(float_of_int(totalLength(t)));
sqtl > 10. && downsample ? T.downsample(int_of_float(sqtl), t) : t;
};
// we have to figure out where to downsample, and how to effectively
//let downsampleIfTooLarge = (t: t) => {
// let sqtl = sqrt(float_of_int(totalLength(t)));
// sqtl > 10 ? T.downsample(int_of_float(sqtl), t) : t;
//};
let t1d = downsampleIfTooLarge(t1);
let t2d = downsampleIfTooLarge(t2);
let t1d = t1; //downsampleIfTooLarge(t1);
let t2d = t2; //downsampleIfTooLarge(t2);
// continuous (*) continuous => continuous, but also
// discrete (*) continuous => continuous (and vice versa). We have to take care of all combos and then combine them:
let ccConvResult =
Continuous.combineAlgebraically(
~downsample=false,
op,
t1d.continuous,
t2d.continuous,
);
let dcConvResult =
Continuous.combineAlgebraicallyWithDiscrete(
~downsample=false,
op,
t2d.continuous,
t1d.discrete,
);
let cdConvResult =
Continuous.combineAlgebraicallyWithDiscrete(
~downsample=false,
op,
t1d.continuous,
t2d.discrete,
@ -931,14 +906,13 @@ module Shape = {
switch (t1, t2) {
| (Continuous(m1), Continuous(m2)) =>
DistTypes.Continuous(
Continuous.combineAlgebraically(~downsample=true, op, m1, m2),
Continuous.combineAlgebraically(op, m1, m2),
)
| (Discrete(m1), Discrete(m2)) =>
DistTypes.Discrete(Discrete.combineAlgebraically(op, m1, m2))
| (m1, m2) =>
DistTypes.Mixed(
Mixed.combineAlgebraically(
~downsample=true,
op,
toMixed(m1),
toMixed(m2),