Added mean and variance functions, and tests for those.
- A getMean and getVariance in each module of src/distPlus/distribution/Distributions.re - They get the exact answer for the functions in Distributions.re, according to the approximation used. - There is now an XYShape.Analysis.integrateContinuousShape function. - Tests in the __tests__/Distributions__Test.re function. - Calculation of the mean and variance for the normal and lognnormal distributions, at the end. - I also added some reduce array functions to the E.A. module.
This commit is contained in:
parent
2e5f285a9e
commit
2f45f92552
|
@ -12,7 +12,17 @@ let makeTest = (~only=false, str, item1, item2) =>
|
||||||
expect(item1) |> toEqual(item2)
|
expect(item1) |> toEqual(item2)
|
||||||
);
|
);
|
||||||
|
|
||||||
|
let makeTestCloseEquality = (~only=false, str, item1, item2, ~digits) =>
|
||||||
|
only
|
||||||
|
? Only.test(str, () =>
|
||||||
|
expect(item1) |> toBeSoCloseTo(item2, ~digits)
|
||||||
|
)
|
||||||
|
: test(str, () =>
|
||||||
|
expect(item1) |> toBeSoCloseTo(item2, ~digits)
|
||||||
|
);
|
||||||
|
|
||||||
describe("Shape", () => {
|
describe("Shape", () => {
|
||||||
|
|
||||||
describe("Continuous", () => {
|
describe("Continuous", () => {
|
||||||
open Distributions.Continuous;
|
open Distributions.Continuous;
|
||||||
let continuous = make(`Linear, shape);
|
let continuous = make(`Linear, shape);
|
||||||
|
@ -185,6 +195,7 @@ describe("Shape", () => {
|
||||||
0.9,
|
0.9,
|
||||||
);
|
);
|
||||||
makeTest("integralEndY", T.Integral.sum(~cache=None, discrete), 1.0);
|
makeTest("integralEndY", T.Integral.sum(~cache=None, discrete), 1.0);
|
||||||
|
|
||||||
});
|
});
|
||||||
|
|
||||||
describe("Mixed", () => {
|
describe("Mixed", () => {
|
||||||
|
@ -289,9 +300,10 @@ describe("Shape", () => {
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
);
|
);
|
||||||
|
|
||||||
});
|
});
|
||||||
|
|
||||||
describe("Mixed", () => {
|
describe("Distplus", () => {
|
||||||
open Distributions.DistPlus;
|
open Distributions.DistPlus;
|
||||||
let discrete: DistTypes.xyShape = {
|
let discrete: DistTypes.xyShape = {
|
||||||
xs: [|1., 4., 8.|],
|
xs: [|1., 4., 8.|],
|
||||||
|
@ -362,4 +374,39 @@ describe("Shape", () => {
|
||||||
),
|
),
|
||||||
);
|
);
|
||||||
});
|
});
|
||||||
|
|
||||||
|
describe("Shape", () => {
|
||||||
|
let mean = 10.0;
|
||||||
|
let stdev = 4.0;
|
||||||
|
let variance = stdev ** 2.0;
|
||||||
|
let numSamples = 10000;
|
||||||
|
|
||||||
|
open Distributions.Shape;
|
||||||
|
let normal: SymbolicDist.dist = `Normal({ mean, stdev});
|
||||||
|
let normalShape = SymbolicDist.GenericSimple.toShape(normal, numSamples);
|
||||||
|
let lognormal = SymbolicDist.Lognormal.fromMeanAndStdev(mean, stdev);
|
||||||
|
let lognormalShape = SymbolicDist.GenericSimple.toShape(lognormal, numSamples);
|
||||||
|
|
||||||
|
makeTestCloseEquality(
|
||||||
|
"Mean of a normal",
|
||||||
|
T.getMean(normalShape),
|
||||||
|
mean,
|
||||||
|
~digits=2);
|
||||||
|
makeTestCloseEquality(
|
||||||
|
"Variance of a normal",
|
||||||
|
T.getVariance(normalShape),
|
||||||
|
variance,
|
||||||
|
~digits=1);
|
||||||
|
makeTestCloseEquality(
|
||||||
|
"Mean of a lognormal",
|
||||||
|
T.getMean(lognormalShape),
|
||||||
|
mean,
|
||||||
|
~digits=2);
|
||||||
|
makeTestCloseEquality(
|
||||||
|
"Variance of a lognormal",
|
||||||
|
T.getVariance(lognormalShape),
|
||||||
|
variance,
|
||||||
|
~digits=0);
|
||||||
|
});
|
||||||
|
|
||||||
});
|
});
|
|
@ -17,6 +17,9 @@ module type dist = {
|
||||||
let integralEndY: (~cache: option(integral), t) => float;
|
let integralEndY: (~cache: option(integral), t) => float;
|
||||||
let integralXtoY: (~cache: option(integral), float, t) => float;
|
let integralXtoY: (~cache: option(integral), float, t) => float;
|
||||||
let integralYtoX: (~cache: option(integral), float, t) => float;
|
let integralYtoX: (~cache: option(integral), float, t) => float;
|
||||||
|
|
||||||
|
let getMean: t => float;
|
||||||
|
let getVariance: t => float;
|
||||||
};
|
};
|
||||||
|
|
||||||
module Dist = (T: dist) => {
|
module Dist = (T: dist) => {
|
||||||
|
@ -35,6 +38,8 @@ module Dist = (T: dist) => {
|
||||||
let toDiscrete = T.toDiscrete;
|
let toDiscrete = T.toDiscrete;
|
||||||
let toScaledContinuous = T.toScaledContinuous;
|
let toScaledContinuous = T.toScaledContinuous;
|
||||||
let toScaledDiscrete = T.toScaledDiscrete;
|
let toScaledDiscrete = T.toScaledDiscrete;
|
||||||
|
let getMean = T.getMean;
|
||||||
|
let getVariance = T.getVariance;
|
||||||
|
|
||||||
// TODO: Move this to each class, have use integral to produce integral in DistPlus class.
|
// TODO: Move this to each class, have use integral to produce integral in DistPlus class.
|
||||||
let scaleBy = (~scale=1.0, t: t) => t |> mapY((r: float) => r *. scale);
|
let scaleBy = (~scale=1.0, t: t) => t |> mapY((r: float) => r *. scale);
|
||||||
|
@ -135,6 +140,9 @@ module Continuous = {
|
||||||
let toDiscrete = _ => None;
|
let toDiscrete = _ => None;
|
||||||
let toScaledContinuous = t => Some(t);
|
let toScaledContinuous = t => Some(t);
|
||||||
let toScaledDiscrete = _ => None;
|
let toScaledDiscrete = _ => None;
|
||||||
|
|
||||||
|
let getMean = (t: t) => XYShape.Analysis.integrateContinuousShape(t);
|
||||||
|
let getVariance = (t: t): float => XYShape.Analysis.getVarianceDangerously(t, getMean, XYShape.Analysis.getMeanOfSquaresContinuousShape);
|
||||||
});
|
});
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -144,11 +152,22 @@ module Discrete = {
|
||||||
let sortedByX = (t: DistTypes.discreteShape) =>
|
let sortedByX = (t: DistTypes.discreteShape) =>
|
||||||
t |> XYShape.T.zip |> XYShape.Zipped.sortByX;
|
t |> XYShape.T.zip |> XYShape.Zipped.sortByX;
|
||||||
let empty = XYShape.T.empty;
|
let empty = XYShape.T.empty;
|
||||||
let combine = (fn, t1: DistTypes.discreteShape, t2: DistTypes.discreteShape): DistTypes.discreteShape => {
|
let combine =
|
||||||
XYShape.Combine.combine(~xsSelection=ALL_XS, ~xToYSelection=XYShape.XtoY.stepwiseIfAtX, ~fn, t1, t2)
|
(fn, t1: DistTypes.discreteShape, t2: DistTypes.discreteShape)
|
||||||
}
|
: DistTypes.discreteShape => {
|
||||||
let _default0 = ((fn, a,b) => fn(E.O.default(0.0, a), E.O.default(0.0, b)));
|
XYShape.Combine.combine(
|
||||||
let reduce = (fn, items) => items |> E.A.fold_left(combine(_default0((fn))), empty);
|
~xsSelection=ALL_XS,
|
||||||
|
~xToYSelection=XYShape.XtoY.stepwiseIfAtX,
|
||||||
|
~fn,
|
||||||
|
t1,
|
||||||
|
t2,
|
||||||
|
);
|
||||||
|
};
|
||||||
|
let _default0 = (fn, a, b) =>
|
||||||
|
fn(E.O.default(0.0, a), E.O.default(0.0, b));
|
||||||
|
let reduce = (fn, items) =>
|
||||||
|
items |> E.A.fold_left(combine(_default0(fn)), empty);
|
||||||
|
|
||||||
module T =
|
module T =
|
||||||
Dist({
|
Dist({
|
||||||
type t = DistTypes.discreteShape;
|
type t = DistTypes.discreteShape;
|
||||||
|
@ -195,7 +214,14 @@ module Discrete = {
|
||||||
|> integral(~cache)
|
|> integral(~cache)
|
||||||
|> Continuous.getShape
|
|> Continuous.getShape
|
||||||
|> XYShape.YtoX.linear(f);
|
|> XYShape.YtoX.linear(f);
|
||||||
|
|
||||||
|
let getMean = (t: t): float => E.A.reducei(t.xs, 0.0, (acc, x, i) => acc +. x*. t.ys[i]);
|
||||||
|
let getVariance = (t: t): float => {
|
||||||
|
let getMeanOfSquares = t => getMean(XYShape.Analysis.squareXYShape(t));
|
||||||
|
XYShape.Analysis.getVarianceDangerously(t, getMean, getMeanOfSquares);
|
||||||
|
};
|
||||||
});
|
});
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
// TODO: I think this shouldn't assume continuous/discrete are normalized to 1.0, and thus should not need the discreteProbabilityMassFraction being separate.
|
// TODO: I think this shouldn't assume continuous/discrete are normalized to 1.0, and thus should not need the discreteProbabilityMassFraction being separate.
|
||||||
|
@ -366,6 +392,30 @@ module Mixed = {
|
||||||
discreteProbabilityMassFraction,
|
discreteProbabilityMassFraction,
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
|
let getMean = (t: t) : float => {
|
||||||
|
let discreteProbabilityMassFraction = t.discreteProbabilityMassFraction;
|
||||||
|
let mean = switch(discreteProbabilityMassFraction){
|
||||||
|
| 1.0 => Discrete.T.getMean(t.discrete);
|
||||||
|
| 0.0 => Continuous.T.getMean(t.continuous);
|
||||||
|
| _ => (Discrete.T.getMean(t.discrete) *. discreteProbabilityMassFraction)
|
||||||
|
+. (Continuous.T.getMean(t.continuous) *. (1.0 -. discreteProbabilityMassFraction))
|
||||||
|
};
|
||||||
|
mean;
|
||||||
|
};
|
||||||
|
|
||||||
|
let getVariance = (t: t) : float => {
|
||||||
|
let discreteProbabilityMassFraction = t.discreteProbabilityMassFraction;
|
||||||
|
let getMeanOfSquares = (t: t) => {
|
||||||
|
Discrete.T.getMean(XYShape.Analysis.squareXYShape(t.discrete))*.t.discreteProbabilityMassFraction
|
||||||
|
+. XYShape.Analysis.getMeanOfSquaresContinuousShape(t.continuous)*.(1.0 -. t.discreteProbabilityMassFraction)
|
||||||
|
};
|
||||||
|
switch(discreteProbabilityMassFraction){
|
||||||
|
| 1.0 => Discrete.T.getVariance(t.discrete);
|
||||||
|
| 0.0 => Continuous.T.getVariance(t.continuous);
|
||||||
|
| _ => XYShape.Analysis.getVarianceDangerously(t, getMean, getMeanOfSquares);
|
||||||
|
};
|
||||||
|
};
|
||||||
});
|
});
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -470,6 +520,18 @@ module Shape = {
|
||||||
Discrete.T.mapY(fn),
|
Discrete.T.mapY(fn),
|
||||||
Continuous.T.mapY(fn),
|
Continuous.T.mapY(fn),
|
||||||
));
|
));
|
||||||
|
|
||||||
|
let getMean = (t: t): float => switch (t) {
|
||||||
|
| Mixed(m) => Mixed.T.getMean(m);
|
||||||
|
| Discrete(m) => Discrete.T.getMean(m);
|
||||||
|
| Continuous(m) => Continuous.T.getMean(m);
|
||||||
|
};
|
||||||
|
|
||||||
|
let getVariance = (t: t): float => switch (t) {
|
||||||
|
| Mixed(m) => Mixed.T.getVariance(m);
|
||||||
|
| Discrete(m) => Discrete.T.getVariance(m);
|
||||||
|
| Continuous(m) => Continuous.T.getVariance(m);
|
||||||
|
};
|
||||||
});
|
});
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -584,6 +646,8 @@ module DistPlus = {
|
||||||
let integralYtoX = (~cache as _, f, t: t) => {
|
let integralYtoX = (~cache as _, f, t: t) => {
|
||||||
Shape.T.Integral.yToX(~cache=Some(t.integralCache), f, toShape(t));
|
Shape.T.Integral.yToX(~cache=Some(t.integralCache), f, toShape(t));
|
||||||
};
|
};
|
||||||
|
let getMean = (t: t) => Shape.T.getMean(t.shape);
|
||||||
|
let getVariance = (t: t) => Shape.T.getVariance(t.shape);
|
||||||
});
|
});
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
|
@ -298,3 +298,56 @@ let logScorePoint = (sampleCount, t1, t2) =>
|
||||||
|> E.O.fmap(T.accumulateYs((+.)))
|
|> E.O.fmap(T.accumulateYs((+.)))
|
||||||
|> E.O.fmap(Pairs.last)
|
|> E.O.fmap(Pairs.last)
|
||||||
|> E.O.fmap(Pairs.y);
|
|> E.O.fmap(Pairs.y);
|
||||||
|
|
||||||
|
|
||||||
|
module Analysis = {
|
||||||
|
let integrateContinuousShape = (
|
||||||
|
~indefiniteIntegralStepwise = (p,h1) => (h1*.(p**2.0)/. 2.0),
|
||||||
|
~indefiniteIntegralLinear = (p, a, b) => (a *. (p ** 2.0) /.2.0) +. (b *. (p**3.0) /. 3.0),
|
||||||
|
t: DistTypes.continuousShape
|
||||||
|
): float => {
|
||||||
|
let xs = t.xyShape.xs;
|
||||||
|
let ys = t.xyShape.ys;
|
||||||
|
|
||||||
|
E.A.reducei(xs, 0.0, (acc, _x, i) => {
|
||||||
|
let areaUnderIntegral = switch(t.interpolation, i){
|
||||||
|
| (_, 0) => 0.0;
|
||||||
|
| (`Stepwise, _) => indefiniteIntegralStepwise(xs[i],ys[i-1])
|
||||||
|
-. indefiniteIntegralStepwise(xs[i-1],ys[i-1]);
|
||||||
|
| (`Linear, _) => {
|
||||||
|
let x1 = xs[i-1];
|
||||||
|
let x2 = xs[i];
|
||||||
|
let h1 = ys[i-1];
|
||||||
|
let h2 = ys[i];
|
||||||
|
let b = (h1 -. h2 ) /. (x1 -.x2)
|
||||||
|
let a = h1 -. b *.x1;
|
||||||
|
indefiniteIntegralLinear(x2, a, b) -. indefiniteIntegralLinear(x1, a, b);
|
||||||
|
};
|
||||||
|
};
|
||||||
|
acc +. areaUnderIntegral;
|
||||||
|
});
|
||||||
|
};
|
||||||
|
let getVarianceDangerously = (
|
||||||
|
t: 't,
|
||||||
|
getMean: ('t => float),
|
||||||
|
getMeanOfSquares: ('t => float),
|
||||||
|
): float => {
|
||||||
|
|
||||||
|
let meanSquared = getMean(t)**2.0;
|
||||||
|
let meanOfSquares = getMeanOfSquares(t);
|
||||||
|
|
||||||
|
meanOfSquares -. meanSquared;
|
||||||
|
};
|
||||||
|
|
||||||
|
let squareXYShape = t: DistTypes.xyShape => {...t, xs: E.A.fmap(x => x**2.0, t.xs)};
|
||||||
|
|
||||||
|
let getMeanOfSquaresContinuousShape = (t: DistTypes.continuousShape) => {
|
||||||
|
let indefiniteIntegralLinear = (p, a, b) => (a *. (p ** 3.0) /.3.0) +. (b *. (p**4.0) /. 4.0);
|
||||||
|
let indefiniteIntegralStepwise = (p,h1) => h1*.(p**3.0)/. 3.0;
|
||||||
|
integrateContinuousShape(
|
||||||
|
~indefiniteIntegralStepwise,
|
||||||
|
~indefiniteIntegralLinear,
|
||||||
|
t
|
||||||
|
);
|
||||||
|
}
|
||||||
|
};
|
|
@ -259,6 +259,9 @@ module A = {
|
||||||
let fold_right = Array.fold_right;
|
let fold_right = Array.fold_right;
|
||||||
let concatMany = Belt.Array.concatMany;
|
let concatMany = Belt.Array.concatMany;
|
||||||
let keepMap = Belt.Array.keepMap;
|
let keepMap = Belt.Array.keepMap;
|
||||||
|
let init = Array.init;
|
||||||
|
let reduce = Belt.Array.reduce;
|
||||||
|
let reducei = Belt.Array.reduceWithIndex;
|
||||||
let min = a =>
|
let min = a =>
|
||||||
get(a, 0)
|
get(a, 0)
|
||||||
|> O.fmap(first => Belt.Array.reduce(a, first, (i, j) => i < j ? i : j));
|
|> O.fmap(first => Belt.Array.reduce(a, first, (i, j) => i < j ? i : j));
|
||||||
|
|
Loading…
Reference in New Issue
Block a user