6/6 tasks done
This commit is contained in:
parent
7251f5864a
commit
24fe66c9d3
|
@ -1,15 +1,65 @@
|
|||
/*
|
||||
This is the most basic file in our invariants family of tests.
|
||||
|
||||
See document in https://github.com/quantified-uncertainty/squiggle/pull/238 for details
|
||||
Validate that the addition of means equals the mean of the addition, similar for subtraction and multiplication.
|
||||
|
||||
Note: digits parameter should be higher than -4.
|
||||
Details in https://deploy-preview-251--squiggle-documentation.netlify.app/docs/internal/invariants/
|
||||
|
||||
Note: epsilon of 1e3 means the invariants are, in general, not being satisfied.
|
||||
*/
|
||||
|
||||
open Jest
|
||||
open Expect
|
||||
open TestHelpers
|
||||
|
||||
module Internals = {
|
||||
let epsilon = 1e3
|
||||
|
||||
let mean = GenericDist_Types.Constructors.UsingDists.mean
|
||||
|
||||
let expectImpossiblePath: string => assertion = algebraicOp =>
|
||||
`${algebraicOp} has`->expect->toEqual("failed")
|
||||
|
||||
let distributions = list{
|
||||
normalMake(0.0, 1e0),
|
||||
betaMake(2e0, 4e0),
|
||||
exponentialMake(1.234e0),
|
||||
uniformMake(7e0, 1e1),
|
||||
// cauchyMake(1e0, 1e0),
|
||||
lognormalMake(1e0, 1e0),
|
||||
triangularMake(1e0, 1e1, 5e1),
|
||||
Ok(floatMake(1e1)),
|
||||
}
|
||||
let pairsOfDifferentDistributions = E.L.combinations2(distributions)
|
||||
|
||||
let runMean: DistributionTypes.genericDist => float = dist => {
|
||||
dist->mean->run->toFloat->E.O2.toExn("Shouldn't see this because we trust testcase input")
|
||||
}
|
||||
|
||||
let testOperationMean = (
|
||||
distOp: (DistributionTypes.genericDist, DistributionTypes.genericDist) => result<DistributionTypes.genericDist, DistributionTypes.error>,
|
||||
description: string,
|
||||
floatOp: (float, float) => float,
|
||||
dist1': SymbolicDistTypes.symbolicDist,
|
||||
dist2': SymbolicDistTypes.symbolicDist,
|
||||
~epsilon: float
|
||||
) => {
|
||||
let dist1 = dist1'->DistributionTypes.Symbolic // ->DistributionTypes.Other
|
||||
let dist2 = dist2'->DistributionTypes.Symbolic // ->DistributionTypes.Other
|
||||
let received =
|
||||
distOp(dist1, dist2)
|
||||
->E.R2.fmap(mean)
|
||||
->E.R2.fmap(run)
|
||||
->E.R2.fmap(toFloat)
|
||||
->E.R.toExn
|
||||
let expected = floatOp(runMean(dist1), runMean(dist2))
|
||||
switch received {
|
||||
| None => expectImpossiblePath(description)
|
||||
| Some(x) => expectErrorToBeBounded(x, expected, ~epsilon=epsilon)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let {
|
||||
algebraicAdd,
|
||||
algebraicMultiply,
|
||||
|
@ -26,115 +76,61 @@ let algebraicSubtract = algebraicSubtract(~env)
|
|||
let algebraicLogarithm = algebraicLogarithm(~env)
|
||||
let algebraicPower = algebraicPower(~env)
|
||||
|
||||
describe("Mean", () => {
|
||||
let digits = -4
|
||||
let {testOperationMean, distributions, pairsOfDifferentDistributions, epsilon} = module(Internals)
|
||||
|
||||
let mean = GenericDist_Types.Constructors.UsingDists.mean
|
||||
describe("Means invariant", () => {
|
||||
|
||||
let runMean: result<DistributionTypes.genericDist, DistributionTypes.error> => float = distR => {
|
||||
distR
|
||||
->E.R2.fmap(mean)
|
||||
->E.R2.fmap(run)
|
||||
->E.R2.fmap(toFloat)
|
||||
->E.R.toExn
|
||||
->E.O2.toExn("Shouldn't see this because we trust testcase input")
|
||||
}
|
||||
describe("for addition", () => {
|
||||
let testAdditionMean = testOperationMean(algebraicAdd, "algebraicAdd", \"+.", ~epsilon=epsilon)
|
||||
|
||||
let impossiblePath: string => assertion = algebraicOp =>
|
||||
`${algebraicOp} has`->expect->toEqual("failed")
|
||||
|
||||
let distributions = list{
|
||||
normalMake(0.0, 1e0),
|
||||
betaMake(2e0, 4e0),
|
||||
exponentialMake(1.234e0),
|
||||
uniformMake(7e0, 1e1),
|
||||
// cauchyMake(1e0, 1e0),
|
||||
lognormalMake(1e0, 1e0),
|
||||
triangularMake(1e0, 1e1, 5e1),
|
||||
Ok(floatMake(1e1)),
|
||||
}
|
||||
let combinations = E.L.combinations2(distributions)
|
||||
let zipDistsDists = E.L.zip(distributions, distributions)
|
||||
|
||||
let testOperationMean = (
|
||||
distOp: (DistributionTypes.genericDist, DistributionTypes.genericDist) => result<DistributionTypes.genericDist, DistributionTypes.error>,
|
||||
description: string,
|
||||
floatOp: (float, float) => float,
|
||||
dist1': result<SymbolicDistTypes.symbolicDist, string>,
|
||||
dist2': result<SymbolicDistTypes.symbolicDist, string>
|
||||
) => {
|
||||
let dist1 = dist1'->E.R2.fmap(x=>DistributionTypes.Symbolic(x))->E.R2.fmap2(s=>DistributionTypes.Other(s))
|
||||
let dist2 = dist2'->E.R2.fmap(x=>DistributionTypes.Symbolic(x))->E.R2.fmap2(s=>DistributionTypes.Other(s))
|
||||
let received =
|
||||
E.R.liftJoin2(distOp, dist1, dist2)
|
||||
->E.R2.fmap(mean)
|
||||
->E.R2.fmap(run)
|
||||
->E.R2.fmap(toFloat)
|
||||
let expected = floatOp(runMean(dist1), runMean(dist2))
|
||||
switch received {
|
||||
| Error(err) => impossiblePath(description)
|
||||
| Ok(x) =>
|
||||
switch x {
|
||||
| None => impossiblePath(description)
|
||||
| Some(x) => x->expect->toBeSoCloseTo(expected, ~digits)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
describe("addition", () => {
|
||||
let testAdditionMean = testOperationMean(algebraicAdd, "algebraicAdd", \"+.")
|
||||
|
||||
testAll("homogeneous addition", zipDistsDists, dists => {
|
||||
let (dist1, dist2) = dists
|
||||
testAdditionMean(dist1, dist2)
|
||||
testAll("of two of the same distribution", distributions, dist => {
|
||||
E.R.liftM2(testAdditionMean, dist, dist) -> E.R.toExn
|
||||
})
|
||||
|
||||
testAll("heterogeneous addition (1)", combinations, dists => {
|
||||
testAll("of two different distributions", pairsOfDifferentDistributions, dists => {
|
||||
let (dist1, dist2) = dists
|
||||
testAdditionMean(dist1, dist2)
|
||||
E.R.liftM2(testAdditionMean, dist1, dist2) -> E.R.toExn
|
||||
})
|
||||
|
||||
testAll("heterogeneous addition (commuted of 1 (or; 2))", combinations, dists => {
|
||||
testAll("of two difference distributions", pairsOfDifferentDistributions, dists => {
|
||||
let (dist1, dist2) = dists
|
||||
testAdditionMean(dist2, dist1)
|
||||
E.R.liftM2(testAdditionMean, dist2, dist1) -> E.R.toExn
|
||||
})
|
||||
})
|
||||
|
||||
describe("subtraction", () => {
|
||||
let testSubtractionMean = testOperationMean(algebraicSubtract, "algebraicSubtract", \"-.")
|
||||
describe("for subtraction", () => {
|
||||
let testSubtractionMean = testOperationMean(algebraicSubtract, "algebraicSubtract", \"-.", ~epsilon=epsilon)
|
||||
|
||||
testAll("homogeneous subtraction", zipDistsDists, dists => {
|
||||
let (dist1, dist2) = dists
|
||||
testSubtractionMean(dist1, dist2)
|
||||
testAll("of two of the same distribution", distributions, dist => {
|
||||
E.R.liftM2(testSubtractionMean, dist, dist) -> E.R.toExn
|
||||
})
|
||||
|
||||
testAll("heterogeneous subtraction (1)", combinations, dists => {
|
||||
testAll("of two different distributions", pairsOfDifferentDistributions, dists => {
|
||||
let (dist1, dist2) = dists
|
||||
testSubtractionMean(dist1, dist2)
|
||||
E.R.liftM2(testSubtractionMean, dist1, dist2) -> E.R.toExn
|
||||
})
|
||||
|
||||
testAll("heterogeneous subtraction (commuted of 1 (or; 2))", combinations, dists => {
|
||||
testAll("of two different distributions", pairsOfDifferentDistributions, dists => {
|
||||
let (dist1, dist2) = dists
|
||||
testSubtractionMean(dist2, dist1)
|
||||
E.R.liftM2(testSubtractionMean, dist2, dist1) -> E.R.toExn
|
||||
})
|
||||
})
|
||||
|
||||
describe("multiplication", () => {
|
||||
let testMultiplicationMean = testOperationMean(algebraicMultiply, "algebraicMultiply", \"*.")
|
||||
describe("for multiplication", () => {
|
||||
let testMultiplicationMean = testOperationMean(algebraicMultiply, "algebraicMultiply", \"*.", ~epsilon=epsilon)
|
||||
|
||||
testAll("homogeneous subtraction", zipDistsDists, dists => {
|
||||
let (dist1, dist2) = dists
|
||||
testMultiplicationMean(dist1, dist2)
|
||||
testAll("of two of the same distribution", distributions, dist => {
|
||||
E.R.liftM2(testMultiplicationMean, dist, dist) -> E.R.toExn
|
||||
})
|
||||
|
||||
testAll("heterogeneoous subtraction (1)", combinations, dists => {
|
||||
testAll("of two different distributions", pairsOfDifferentDistributions, dists => {
|
||||
let (dist1, dist2) = dists
|
||||
testMultiplicationMean(dist1, dist2)
|
||||
E.R.liftM2(testMultiplicationMean, dist1, dist2) -> E.R.toExn
|
||||
})
|
||||
|
||||
testAll("heterogeneoous subtraction (commuted of 1 (or; 2))", combinations, dists => {
|
||||
testAll("of two different distributions", pairsOfDifferentDistributions, dists => {
|
||||
let (dist1, dist2) = dists
|
||||
testMultiplicationMean(dist2, dist1)
|
||||
E.R.liftM2(testMultiplicationMean, dist2, dist1) -> E.R.toExn
|
||||
})
|
||||
})
|
||||
})
|
||||
|
|
|
@ -1,6 +1,16 @@
|
|||
open Jest
|
||||
open Expect
|
||||
|
||||
let expectErrorToBeBounded = (received, expected, ~epsilon) => {
|
||||
let distance = Js.Math.abs_float(received -. expected)
|
||||
let error = if expected < epsilon ** 2.5 {
|
||||
distance /. epsilon
|
||||
} else {
|
||||
distance /. Js.Math.abs_float(expected)
|
||||
}
|
||||
error -> expect -> toBeLessThan(epsilon)
|
||||
}
|
||||
|
||||
let makeTest = (~only=false, str, item1, item2) =>
|
||||
only
|
||||
? Only.test(str, () => expect(item1)->toEqual(item2))
|
||||
|
|
Loading…
Reference in New Issue
Block a user