Add Lerna with dependencies between packages
This commit is contained in:
parent
239c08b6cb
commit
1b3ad56977
3
.gitignore
vendored
Normal file
3
.gitignore
vendored
Normal file
|
@ -0,0 +1,3 @@
|
|||
node_modules
|
||||
.cache
|
||||
.merlin
|
13
README.md
13
README.md
|
@ -5,15 +5,10 @@ This is an experiment DSL/language for making probabilistic estimates.
|
|||
## DistPlus
|
||||
We have a custom library called DistPlus to handle distributions with additional metadata. This helps handle mixed distributions (continuous + discrete), a cache for a cdf, possible unit types (specific times are supported), and limited domains.
|
||||
|
||||
## Running
|
||||
|
||||
Currently it only has a few very simple models.
|
||||
## Running packages in the monorepo
|
||||
This application uses `lerna` to manage dependencies between packages. To install
|
||||
dependencies of all packages, run:
|
||||
|
||||
```
|
||||
yarn
|
||||
yarn run start
|
||||
yarn run parcel
|
||||
lerna bootstrap
|
||||
```
|
||||
|
||||
## Expected future setup
|
||||
![setup](https://raw.githubusercontent.com/foretold-app/widedomain/master/Screen%20Shot%202020-06-30%20at%208.27.32%20AM.png)
|
||||
|
|
6
lerna.json
Normal file
6
lerna.json
Normal file
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"packages": [
|
||||
"packages/*"
|
||||
],
|
||||
"version": "0.0.0"
|
||||
}
|
13
package.json
13
package.json
|
@ -1,8 +1,7 @@
|
|||
{
|
||||
"name": "root",
|
||||
"private": true,
|
||||
"devDependencies": {
|
||||
},
|
||||
"scripts": {
|
||||
}
|
||||
}
|
||||
"private": true,
|
||||
"devDependencies": {
|
||||
"lerna": "^4.0.0"
|
||||
},
|
||||
"name": "squiggle"
|
||||
}
|
||||
|
|
|
@ -1,13 +0,0 @@
|
|||
open Jest;
|
||||
open Expect;
|
||||
|
||||
describe("Bandwidth", () => {
|
||||
test("nrd0()", () => {
|
||||
let data = [|1., 4., 3., 2.|];
|
||||
expect(Bandwidth.nrd0(data)) |> toEqual(0.7625801874014622);
|
||||
});
|
||||
test("nrd()", () => {
|
||||
let data = [|1., 4., 3., 2.|];
|
||||
expect(Bandwidth.nrd(data)) |> toEqual(0.8981499984950554);
|
||||
});
|
||||
});
|
|
@ -1,104 +0,0 @@
|
|||
open Jest;
|
||||
open Expect;
|
||||
|
||||
let makeTest = (~only=false, str, item1, item2) =>
|
||||
only
|
||||
? Only.test(str, () =>
|
||||
expect(item1) |> toEqual(item2)
|
||||
)
|
||||
: test(str, () =>
|
||||
expect(item1) |> toEqual(item2)
|
||||
);
|
||||
|
||||
describe("DistTypes", () => {
|
||||
describe("Domain", () => {
|
||||
let makeComplete = (yPoint, expectation) =>
|
||||
makeTest(
|
||||
"With input: " ++ Js.Float.toString(yPoint),
|
||||
DistTypes.Domain.yPointToSubYPoint(Complete, yPoint),
|
||||
expectation,
|
||||
);
|
||||
let makeSingle =
|
||||
(
|
||||
direction: [ | `left | `right],
|
||||
excludingProbabilityMass,
|
||||
yPoint,
|
||||
expectation,
|
||||
) =>
|
||||
makeTest(
|
||||
"Excluding: "
|
||||
++ Js.Float.toString(excludingProbabilityMass)
|
||||
++ " and yPoint: "
|
||||
++ Js.Float.toString(yPoint),
|
||||
DistTypes.Domain.yPointToSubYPoint(
|
||||
direction == `left
|
||||
? LeftLimited({xPoint: 3.0, excludingProbabilityMass})
|
||||
: RightLimited({xPoint: 3.0, excludingProbabilityMass}),
|
||||
yPoint,
|
||||
),
|
||||
expectation,
|
||||
);
|
||||
let makeDouble = (domain, yPoint, expectation) =>
|
||||
makeTest(
|
||||
"Excluding: limits",
|
||||
DistTypes.Domain.yPointToSubYPoint(domain, yPoint),
|
||||
expectation,
|
||||
);
|
||||
|
||||
describe("With Complete Domain", () => {
|
||||
makeComplete(0.0, Some(0.0));
|
||||
makeComplete(0.6, Some(0.6));
|
||||
makeComplete(1.0, Some(1.0));
|
||||
});
|
||||
describe("With Left Limit", () => {
|
||||
makeSingle(`left, 0.5, 1.0, Some(1.0));
|
||||
makeSingle(`left, 0.5, 0.75, Some(0.5));
|
||||
makeSingle(`left, 0.8, 0.9, Some(0.5));
|
||||
makeSingle(`left, 0.5, 0.4, None);
|
||||
makeSingle(`left, 0.5, 0.5, Some(0.0));
|
||||
});
|
||||
describe("With Right Limit", () => {
|
||||
makeSingle(`right, 0.5, 1.0, None);
|
||||
makeSingle(`right, 0.5, 0.25, Some(0.5));
|
||||
makeSingle(`right, 0.8, 0.5, None);
|
||||
makeSingle(`right, 0.2, 0.2, Some(0.25));
|
||||
makeSingle(`right, 0.5, 0.5, Some(1.0));
|
||||
makeSingle(`right, 0.5, 0.0, Some(0.0));
|
||||
makeSingle(`right, 0.5, 0.5, Some(1.0));
|
||||
});
|
||||
describe("With Left and Right Limit", () => {
|
||||
makeDouble(
|
||||
LeftAndRightLimited(
|
||||
{excludingProbabilityMass: 0.25, xPoint: 3.0},
|
||||
{excludingProbabilityMass: 0.25, xPoint: 10.0},
|
||||
),
|
||||
0.5,
|
||||
Some(0.5),
|
||||
);
|
||||
makeDouble(
|
||||
LeftAndRightLimited(
|
||||
{excludingProbabilityMass: 0.1, xPoint: 3.0},
|
||||
{excludingProbabilityMass: 0.1, xPoint: 10.0},
|
||||
),
|
||||
0.2,
|
||||
Some(0.125),
|
||||
);
|
||||
makeDouble(
|
||||
LeftAndRightLimited(
|
||||
{excludingProbabilityMass: 0.1, xPoint: 3.0},
|
||||
{excludingProbabilityMass: 0.1, xPoint: 10.0},
|
||||
),
|
||||
0.1,
|
||||
Some(0.0),
|
||||
);
|
||||
makeDouble(
|
||||
LeftAndRightLimited(
|
||||
{excludingProbabilityMass: 0.1, xPoint: 3.0},
|
||||
{excludingProbabilityMass: 0.1, xPoint: 10.0},
|
||||
),
|
||||
0.05,
|
||||
None,
|
||||
);
|
||||
});
|
||||
})
|
||||
});
|
|
@ -1,415 +0,0 @@
|
|||
open Jest;
|
||||
open Expect;
|
||||
|
||||
let shape: DistTypes.xyShape = {xs: [|1., 4., 8.|], ys: [|8., 9., 2.|]};
|
||||
|
||||
// let makeTest = (~only=false, str, item1, item2) =>
|
||||
// only
|
||||
// ? Only.test(str, () =>
|
||||
// expect(item1) |> toEqual(item2)
|
||||
// )
|
||||
// : test(str, () =>
|
||||
// expect(item1) |> toEqual(item2)
|
||||
// );
|
||||
|
||||
// let makeTestCloseEquality = (~only=false, str, item1, item2, ~digits) =>
|
||||
// only
|
||||
// ? Only.test(str, () =>
|
||||
// expect(item1) |> toBeSoCloseTo(item2, ~digits)
|
||||
// )
|
||||
// : test(str, () =>
|
||||
// expect(item1) |> toBeSoCloseTo(item2, ~digits)
|
||||
// );
|
||||
|
||||
// describe("Shape", () => {
|
||||
// describe("Continuous", () => {
|
||||
// open Continuous;
|
||||
// let continuous = make(`Linear, shape, None);
|
||||
// makeTest("minX", T.minX(continuous), 1.0);
|
||||
// makeTest("maxX", T.maxX(continuous), 8.0);
|
||||
// makeTest(
|
||||
// "mapY",
|
||||
// T.mapY(r => r *. 2.0, continuous) |> getShape |> (r => r.ys),
|
||||
// [|16., 18.0, 4.0|],
|
||||
// );
|
||||
// describe("xToY", () => {
|
||||
// describe("when Linear", () => {
|
||||
// makeTest(
|
||||
// "at 4.0",
|
||||
// T.xToY(4., continuous),
|
||||
// {continuous: 9.0, discrete: 0.0},
|
||||
// );
|
||||
// // Note: This below is weird to me, I'm not sure if it's what we want really.
|
||||
// makeTest(
|
||||
// "at 0.0",
|
||||
// T.xToY(0., continuous),
|
||||
// {continuous: 8.0, discrete: 0.0},
|
||||
// );
|
||||
// makeTest(
|
||||
// "at 5.0",
|
||||
// T.xToY(5., continuous),
|
||||
// {continuous: 7.25, discrete: 0.0},
|
||||
// );
|
||||
// makeTest(
|
||||
// "at 10.0",
|
||||
// T.xToY(10., continuous),
|
||||
// {continuous: 2.0, discrete: 0.0},
|
||||
// );
|
||||
// });
|
||||
// describe("when Stepwise", () => {
|
||||
// let continuous = make(`Stepwise, shape, None);
|
||||
// makeTest(
|
||||
// "at 4.0",
|
||||
// T.xToY(4., continuous),
|
||||
// {continuous: 9.0, discrete: 0.0},
|
||||
// );
|
||||
// makeTest(
|
||||
// "at 0.0",
|
||||
// T.xToY(0., continuous),
|
||||
// {continuous: 0.0, discrete: 0.0},
|
||||
// );
|
||||
// makeTest(
|
||||
// "at 5.0",
|
||||
// T.xToY(5., continuous),
|
||||
// {continuous: 9.0, discrete: 0.0},
|
||||
// );
|
||||
// makeTest(
|
||||
// "at 10.0",
|
||||
// T.xToY(10., continuous),
|
||||
// {continuous: 2.0, discrete: 0.0},
|
||||
// );
|
||||
// });
|
||||
// });
|
||||
// makeTest(
|
||||
// "integral",
|
||||
// T.Integral.get(~cache=None, continuous) |> getShape,
|
||||
// {xs: [|1.0, 4.0, 8.0|], ys: [|0.0, 25.5, 47.5|]},
|
||||
// );
|
||||
// makeTest(
|
||||
// "toLinear",
|
||||
// {
|
||||
// let continuous =
|
||||
// make(`Stepwise, {xs: [|1., 4., 8.|], ys: [|0.1, 5., 1.0|]}, None);
|
||||
// continuous |> toLinear |> E.O.fmap(getShape);
|
||||
// },
|
||||
// Some({
|
||||
// xs: [|1.00007, 1.00007, 4.0, 4.00007, 8.0, 8.00007|],
|
||||
// ys: [|0.0, 0.1, 0.1, 5.0, 5.0, 1.0|],
|
||||
// }),
|
||||
// );
|
||||
// makeTest(
|
||||
// "toLinear",
|
||||
// {
|
||||
// let continuous = make(`Stepwise, {xs: [|0.0|], ys: [|0.3|]}, None);
|
||||
// continuous |> toLinear |> E.O.fmap(getShape);
|
||||
// },
|
||||
// Some({xs: [|0.0|], ys: [|0.3|]}),
|
||||
// );
|
||||
// makeTest(
|
||||
// "integralXToY",
|
||||
// T.Integral.xToY(~cache=None, 0.0, continuous),
|
||||
// 0.0,
|
||||
// );
|
||||
// makeTest(
|
||||
// "integralXToY",
|
||||
// T.Integral.xToY(~cache=None, 2.0, continuous),
|
||||
// 8.5,
|
||||
// );
|
||||
// makeTest(
|
||||
// "integralXToY",
|
||||
// T.Integral.xToY(~cache=None, 100.0, continuous),
|
||||
// 47.5,
|
||||
// );
|
||||
// makeTest(
|
||||
// "integralEndY",
|
||||
// continuous
|
||||
// |> T.normalize //scaleToIntegralSum(~intendedSum=1.0)
|
||||
// |> T.Integral.sum(~cache=None),
|
||||
// 1.0,
|
||||
// );
|
||||
// });
|
||||
|
||||
// describe("Discrete", () => {
|
||||
// open Discrete;
|
||||
// let shape: DistTypes.xyShape = {
|
||||
// xs: [|1., 4., 8.|],
|
||||
// ys: [|0.3, 0.5, 0.2|],
|
||||
// };
|
||||
// let discrete = make(shape, None);
|
||||
// makeTest("minX", T.minX(discrete), 1.0);
|
||||
// makeTest("maxX", T.maxX(discrete), 8.0);
|
||||
// makeTest(
|
||||
// "mapY",
|
||||
// T.mapY(r => r *. 2.0, discrete) |> (r => getShape(r).ys),
|
||||
// [|0.6, 1.0, 0.4|],
|
||||
// );
|
||||
// makeTest(
|
||||
// "xToY at 4.0",
|
||||
// T.xToY(4., discrete),
|
||||
// {discrete: 0.5, continuous: 0.0},
|
||||
// );
|
||||
// makeTest(
|
||||
// "xToY at 0.0",
|
||||
// T.xToY(0., discrete),
|
||||
// {discrete: 0.0, continuous: 0.0},
|
||||
// );
|
||||
// makeTest(
|
||||
// "xToY at 5.0",
|
||||
// T.xToY(5., discrete),
|
||||
// {discrete: 0.0, continuous: 0.0},
|
||||
// );
|
||||
// makeTest(
|
||||
// "scaleBy",
|
||||
// scaleBy(~scale=4.0, discrete),
|
||||
// make({xs: [|1., 4., 8.|], ys: [|1.2, 2.0, 0.8|]}, None),
|
||||
// );
|
||||
// makeTest(
|
||||
// "normalize, then scale by 4.0",
|
||||
// discrete
|
||||
// |> T.normalize
|
||||
// |> scaleBy(~scale=4.0),
|
||||
// make({xs: [|1., 4., 8.|], ys: [|1.2, 2.0, 0.8|]}, None),
|
||||
// );
|
||||
// makeTest(
|
||||
// "scaleToIntegralSum: back and forth",
|
||||
// discrete
|
||||
// |> T.normalize
|
||||
// |> scaleBy(~scale=4.0)
|
||||
// |> T.normalize,
|
||||
// discrete,
|
||||
// );
|
||||
// makeTest(
|
||||
// "integral",
|
||||
// T.Integral.get(~cache=None, discrete),
|
||||
// Continuous.make(
|
||||
// `Stepwise,
|
||||
// {xs: [|1., 4., 8.|], ys: [|0.3, 0.8, 1.0|]},
|
||||
// None
|
||||
// ),
|
||||
// );
|
||||
// makeTest(
|
||||
// "integral with 1 element",
|
||||
// T.Integral.get(~cache=None, Discrete.make({xs: [|0.0|], ys: [|1.0|]}, None)),
|
||||
// Continuous.make(`Stepwise, {xs: [|0.0|], ys: [|1.0|]}, None),
|
||||
// );
|
||||
// makeTest(
|
||||
// "integralXToY",
|
||||
// T.Integral.xToY(~cache=None, 6.0, discrete),
|
||||
// 0.9,
|
||||
// );
|
||||
// makeTest("integralEndY", T.Integral.sum(~cache=None, discrete), 1.0);
|
||||
// makeTest("mean", T.mean(discrete), 3.9);
|
||||
// makeTestCloseEquality(
|
||||
// "variance",
|
||||
// T.variance(discrete),
|
||||
// 5.89,
|
||||
// ~digits=7,
|
||||
// );
|
||||
// });
|
||||
|
||||
// describe("Mixed", () => {
|
||||
// open Distributions.Mixed;
|
||||
// let discreteShape: DistTypes.xyShape = {
|
||||
// xs: [|1., 4., 8.|],
|
||||
// ys: [|0.3, 0.5, 0.2|],
|
||||
// };
|
||||
// let discrete = Discrete.make(discreteShape, None);
|
||||
// let continuous =
|
||||
// Continuous.make(
|
||||
// `Linear,
|
||||
// {xs: [|3., 7., 14.|], ys: [|0.058, 0.082, 0.124|]},
|
||||
// None
|
||||
// )
|
||||
// |> Continuous.T.normalize; //scaleToIntegralSum(~intendedSum=1.0);
|
||||
// let mixed = Mixed.make(
|
||||
// ~continuous,
|
||||
// ~discrete,
|
||||
// );
|
||||
// makeTest("minX", T.minX(mixed), 1.0);
|
||||
// makeTest("maxX", T.maxX(mixed), 14.0);
|
||||
// makeTest(
|
||||
// "mapY",
|
||||
// T.mapY(r => r *. 2.0, mixed),
|
||||
// Mixed.make(
|
||||
// ~continuous=
|
||||
// Continuous.make(
|
||||
// `Linear,
|
||||
// {
|
||||
// xs: [|3., 7., 14.|],
|
||||
// ys: [|
|
||||
// 0.11588411588411589,
|
||||
// 0.16383616383616384,
|
||||
// 0.24775224775224775,
|
||||
// |],
|
||||
// },
|
||||
// None
|
||||
// ),
|
||||
// ~discrete=Discrete.make({xs: [|1., 4., 8.|], ys: [|0.6, 1.0, 0.4|]}, None)
|
||||
// ),
|
||||
// );
|
||||
// makeTest(
|
||||
// "xToY at 4.0",
|
||||
// T.xToY(4., mixed),
|
||||
// {discrete: 0.25, continuous: 0.03196803196803197},
|
||||
// );
|
||||
// makeTest(
|
||||
// "xToY at 0.0",
|
||||
// T.xToY(0., mixed),
|
||||
// {discrete: 0.0, continuous: 0.028971028971028972},
|
||||
// );
|
||||
// makeTest(
|
||||
// "xToY at 5.0",
|
||||
// T.xToY(7., mixed),
|
||||
// {discrete: 0.0, continuous: 0.04095904095904096},
|
||||
// );
|
||||
// makeTest("integralEndY", T.Integral.sum(~cache=None, mixed), 1.0);
|
||||
// makeTest(
|
||||
// "scaleBy",
|
||||
// Mixed.scaleBy(~scale=2.0, mixed),
|
||||
// Mixed.make(
|
||||
// ~continuous=
|
||||
// Continuous.make(
|
||||
// `Linear,
|
||||
// {
|
||||
// xs: [|3., 7., 14.|],
|
||||
// ys: [|
|
||||
// 0.11588411588411589,
|
||||
// 0.16383616383616384,
|
||||
// 0.24775224775224775,
|
||||
// |],
|
||||
// },
|
||||
// None
|
||||
// ),
|
||||
// ~discrete=Discrete.make({xs: [|1., 4., 8.|], ys: [|0.6, 1.0, 0.4|]}, None),
|
||||
// ),
|
||||
// );
|
||||
// makeTest(
|
||||
// "integral",
|
||||
// T.Integral.get(~cache=None, mixed),
|
||||
// Continuous.make(
|
||||
// `Linear,
|
||||
// {
|
||||
// xs: [|1.00007, 1.00007, 3., 4., 4.00007, 7., 8., 8.00007, 14.|],
|
||||
// ys: [|
|
||||
// 0.0,
|
||||
// 0.0,
|
||||
// 0.15,
|
||||
// 0.18496503496503497,
|
||||
// 0.4349674825174825,
|
||||
// 0.5398601398601399,
|
||||
// 0.5913086913086913,
|
||||
// 0.6913122927072927,
|
||||
// 1.0,
|
||||
// |],
|
||||
// },
|
||||
// None,
|
||||
// ),
|
||||
// );
|
||||
// });
|
||||
|
||||
// describe("Distplus", () => {
|
||||
// open DistPlus;
|
||||
// let discreteShape: DistTypes.xyShape = {
|
||||
// xs: [|1., 4., 8.|],
|
||||
// ys: [|0.3, 0.5, 0.2|],
|
||||
// };
|
||||
// let discrete = Discrete.make(discreteShape, None);
|
||||
// let continuous =
|
||||
// Continuous.make(
|
||||
// `Linear,
|
||||
// {xs: [|3., 7., 14.|], ys: [|0.058, 0.082, 0.124|]},
|
||||
// None
|
||||
// )
|
||||
// |> Continuous.T.normalize; //scaleToIntegralSum(~intendedSum=1.0);
|
||||
// let mixed =
|
||||
// Mixed.make(
|
||||
// ~continuous,
|
||||
// ~discrete,
|
||||
// );
|
||||
// let distPlus =
|
||||
// DistPlus.make(
|
||||
// ~shape=Mixed(mixed),
|
||||
// ~squiggleString=None,
|
||||
// (),
|
||||
// );
|
||||
// makeTest("minX", T.minX(distPlus), 1.0);
|
||||
// makeTest("maxX", T.maxX(distPlus), 14.0);
|
||||
// makeTest(
|
||||
// "xToY at 4.0",
|
||||
// T.xToY(4., distPlus),
|
||||
// {discrete: 0.25, continuous: 0.03196803196803197},
|
||||
// );
|
||||
// makeTest(
|
||||
// "xToY at 0.0",
|
||||
// T.xToY(0., distPlus),
|
||||
// {discrete: 0.0, continuous: 0.028971028971028972},
|
||||
// );
|
||||
// makeTest(
|
||||
// "xToY at 5.0",
|
||||
// T.xToY(7., distPlus),
|
||||
// {discrete: 0.0, continuous: 0.04095904095904096},
|
||||
// );
|
||||
// makeTest("integralEndY", T.Integral.sum(~cache=None, distPlus), 1.0);
|
||||
// makeTest(
|
||||
// "integral",
|
||||
// T.Integral.get(~cache=None, distPlus) |> T.toContinuous,
|
||||
// Some(
|
||||
// Continuous.make(
|
||||
// `Linear,
|
||||
// {
|
||||
// xs: [|1.00007, 1.00007, 3., 4., 4.00007, 7., 8., 8.00007, 14.|],
|
||||
// ys: [|
|
||||
// 0.0,
|
||||
// 0.0,
|
||||
// 0.15,
|
||||
// 0.18496503496503497,
|
||||
// 0.4349674825174825,
|
||||
// 0.5398601398601399,
|
||||
// 0.5913086913086913,
|
||||
// 0.6913122927072927,
|
||||
// 1.0,
|
||||
// |],
|
||||
// },
|
||||
// None,
|
||||
// ),
|
||||
// ),
|
||||
// );
|
||||
// });
|
||||
|
||||
// describe("Shape", () => {
|
||||
// let mean = 10.0;
|
||||
// let stdev = 4.0;
|
||||
// let variance = stdev ** 2.0;
|
||||
// let numSamples = 10000;
|
||||
// open Distributions.Shape;
|
||||
// let normal: SymbolicTypes.symbolicDist = `Normal({mean, stdev});
|
||||
// let normalShape = ExpressionTree.toShape(numSamples, `SymbolicDist(normal));
|
||||
// let lognormal = SymbolicDist.Lognormal.fromMeanAndStdev(mean, stdev);
|
||||
// let lognormalShape = ExpressionTree.toShape(numSamples, `SymbolicDist(lognormal));
|
||||
|
||||
// makeTestCloseEquality(
|
||||
// "Mean of a normal",
|
||||
// T.mean(normalShape),
|
||||
// mean,
|
||||
// ~digits=2,
|
||||
// );
|
||||
// makeTestCloseEquality(
|
||||
// "Variance of a normal",
|
||||
// T.variance(normalShape),
|
||||
// variance,
|
||||
// ~digits=1,
|
||||
// );
|
||||
// makeTestCloseEquality(
|
||||
// "Mean of a lognormal",
|
||||
// T.mean(lognormalShape),
|
||||
// mean,
|
||||
// ~digits=2,
|
||||
// );
|
||||
// makeTestCloseEquality(
|
||||
// "Variance of a lognormal",
|
||||
// T.variance(lognormalShape),
|
||||
// variance,
|
||||
// ~digits=0,
|
||||
// );
|
||||
// });
|
||||
// });
|
|
@ -1,57 +0,0 @@
|
|||
open Jest;
|
||||
open Expect;
|
||||
|
||||
let makeTest = (~only=false, str, item1, item2) =>
|
||||
only
|
||||
? Only.test(str, () =>
|
||||
expect(item1) |> toEqual(item2)
|
||||
)
|
||||
: test(str, () =>
|
||||
expect(item1) |> toEqual(item2)
|
||||
);
|
||||
|
||||
let evalParams: ExpressionTypes.ExpressionTree.evaluationParams = {
|
||||
samplingInputs: {
|
||||
sampleCount: 1000,
|
||||
outputXYPoints: 10000,
|
||||
kernelWidth: None,
|
||||
shapeLength: 1000,
|
||||
},
|
||||
environment:
|
||||
[|
|
||||
("K", `SymbolicDist(`Float(1000.0))),
|
||||
("M", `SymbolicDist(`Float(1000000.0))),
|
||||
("B", `SymbolicDist(`Float(1000000000.0))),
|
||||
("T", `SymbolicDist(`Float(1000000000000.0))),
|
||||
|]
|
||||
->Belt.Map.String.fromArray,
|
||||
evaluateNode: ExpressionTreeEvaluator.toLeaf,
|
||||
};
|
||||
|
||||
let shape1: DistTypes.xyShape = {xs: [|1., 4., 8.|], ys: [|0.2, 0.4, 0.8|]};
|
||||
|
||||
describe("XYShapes", () => {
|
||||
describe("logScorePoint", () => {
|
||||
makeTest(
|
||||
"When identical",
|
||||
{
|
||||
let foo =
|
||||
HardcodedFunctions.(
|
||||
makeRenderedDistFloat("scaleMultiply", (dist, float) =>
|
||||
verticalScaling(`Multiply, dist, float)
|
||||
)
|
||||
);
|
||||
|
||||
TypeSystem.Function.T.run(
|
||||
evalParams,
|
||||
[|
|
||||
`SymbolicDist(`Float(100.0)),
|
||||
`SymbolicDist(`Float(1.0)),
|
||||
|],
|
||||
foo,
|
||||
);
|
||||
},
|
||||
Error("Sad"),
|
||||
)
|
||||
})
|
||||
});
|
|
@ -1,24 +0,0 @@
|
|||
open Jest;
|
||||
open Expect;
|
||||
|
||||
let makeTest = (~only=false, str, item1, item2) =>
|
||||
only
|
||||
? Only.test(str, () =>
|
||||
expect(item1) |> toEqual(item2)
|
||||
)
|
||||
: test(str, () =>
|
||||
expect(item1) |> toEqual(item2)
|
||||
);
|
||||
|
||||
describe("Lodash", () => {
|
||||
describe("Lodash", () => {
|
||||
makeTest("min", Lodash.min([|1, 3, 4|]), 1);
|
||||
makeTest("max", Lodash.max([|1, 3, 4|]), 4);
|
||||
makeTest("uniq", Lodash.uniq([|1, 3, 4, 4|]), [|1, 3, 4|]);
|
||||
makeTest(
|
||||
"countBy",
|
||||
Lodash.countBy([|1, 3, 4, 4|], r => r),
|
||||
Js.Dict.fromArray([|("1", 1), ("3", 1), ("4", 2)|]),
|
||||
);
|
||||
})
|
||||
});
|
|
@ -1,51 +0,0 @@
|
|||
open Jest;
|
||||
open Expect;
|
||||
|
||||
let makeTest = (~only=false, str, item1, item2) =>
|
||||
only
|
||||
? Only.test(str, () =>
|
||||
expect(item1) |> toEqual(item2)
|
||||
)
|
||||
: test(str, () =>
|
||||
expect(item1) |> toEqual(item2)
|
||||
);
|
||||
|
||||
describe("Lodash", () => {
|
||||
describe("Lodash", () => {
|
||||
makeTest(
|
||||
"split",
|
||||
SamplesToShape.Internals.T.splitContinuousAndDiscrete([|1.432, 1.33455, 2.0|]),
|
||||
([|1.432, 1.33455, 2.0|], E.FloatFloatMap.empty()),
|
||||
);
|
||||
makeTest(
|
||||
"split",
|
||||
SamplesToShape.Internals.T.splitContinuousAndDiscrete([|
|
||||
1.432,
|
||||
1.33455,
|
||||
2.0,
|
||||
2.0,
|
||||
2.0,
|
||||
2.0,
|
||||
|])
|
||||
|> (((c, disc)) => (c, disc |> E.FloatFloatMap.toArray)),
|
||||
([|1.432, 1.33455|], [|(2.0, 4.0)|]),
|
||||
);
|
||||
|
||||
let makeDuplicatedArray = count => {
|
||||
let arr = Belt.Array.range(1, count) |> E.A.fmap(float_of_int);
|
||||
let sorted = arr |> Belt.SortArray.stableSortBy(_, compare);
|
||||
E.A.concatMany([|sorted, sorted, sorted, sorted|])
|
||||
|> Belt.SortArray.stableSortBy(_, compare);
|
||||
};
|
||||
|
||||
let (_, discrete) =
|
||||
SamplesToShape.Internals.T.splitContinuousAndDiscrete(makeDuplicatedArray(10));
|
||||
let toArr = discrete |> E.FloatFloatMap.toArray;
|
||||
makeTest("splitMedium", toArr |> Belt.Array.length, 10);
|
||||
|
||||
let (c, discrete) =
|
||||
SamplesToShape.Internals.T.splitContinuousAndDiscrete(makeDuplicatedArray(500));
|
||||
let toArr = discrete |> E.FloatFloatMap.toArray;
|
||||
makeTest("splitMedium", toArr |> Belt.Array.length, 500);
|
||||
})
|
||||
});
|
|
@ -1,63 +0,0 @@
|
|||
open Jest;
|
||||
open Expect;
|
||||
|
||||
let makeTest = (~only=false, str, item1, item2) =>
|
||||
only
|
||||
? Only.test(str, () =>
|
||||
expect(item1) |> toEqual(item2)
|
||||
)
|
||||
: test(str, () =>
|
||||
expect(item1) |> toEqual(item2)
|
||||
);
|
||||
|
||||
let shape1: DistTypes.xyShape = {xs: [|1., 4., 8.|], ys: [|0.2, 0.4, 0.8|]};
|
||||
|
||||
let shape2: DistTypes.xyShape = {
|
||||
xs: [|1., 5., 10.|],
|
||||
ys: [|0.2, 0.5, 0.8|],
|
||||
};
|
||||
|
||||
let shape3: DistTypes.xyShape = {
|
||||
xs: [|1., 20., 50.|],
|
||||
ys: [|0.2, 0.5, 0.8|],
|
||||
};
|
||||
|
||||
describe("XYShapes", () => {
|
||||
describe("logScorePoint", () => {
|
||||
makeTest(
|
||||
"When identical",
|
||||
XYShape.logScorePoint(30, shape1, shape1),
|
||||
Some(0.0),
|
||||
);
|
||||
makeTest(
|
||||
"When similar",
|
||||
XYShape.logScorePoint(30, shape1, shape2),
|
||||
Some(1.658971191043856),
|
||||
);
|
||||
makeTest(
|
||||
"When very different",
|
||||
XYShape.logScorePoint(30, shape1, shape3),
|
||||
Some(210.3721280423322),
|
||||
);
|
||||
});
|
||||
// describe("transverse", () => {
|
||||
// makeTest(
|
||||
// "When very different",
|
||||
// XYShape.Transversal._transverse(
|
||||
// (aCurrent, aLast) => aCurrent +. aLast,
|
||||
// [|1.0, 2.0, 3.0, 4.0|],
|
||||
// ),
|
||||
// [|1.0, 3.0, 6.0, 10.0|],
|
||||
// )
|
||||
// });
|
||||
describe("integrateWithTriangles", () => {
|
||||
makeTest(
|
||||
"integrates correctly",
|
||||
XYShape.Range.integrateWithTriangles(shape1),
|
||||
Some({
|
||||
xs: [|1., 4., 8.|],
|
||||
ys: [|0.0, 0.9000000000000001, 3.3000000000000007|],
|
||||
}),
|
||||
)
|
||||
});
|
||||
});
|
|
@ -39,7 +39,7 @@
|
|||
"@rescript/react",
|
||||
"bs-css",
|
||||
"bs-css-dom",
|
||||
"squiggle-experimental",
|
||||
"@foretold-app/squiggle",
|
||||
"rationale",
|
||||
"bs-moment",
|
||||
"reschema"
|
||||
|
|
54800
packages/playground/package-lock.json
generated
54800
packages/playground/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
|
@ -1,9 +1,10 @@
|
|||
{
|
||||
"name": "estiband",
|
||||
"name": "@foretold-app/squiggle-playground",
|
||||
"version": "0.1.0",
|
||||
"homepage": "https://foretold-app.github.io/estiband/",
|
||||
"scripts": {
|
||||
"build": "rescript build",
|
||||
"build:deps": "rescript build -with-deps",
|
||||
"build:style": "tailwind build src/styles/index.css -o src/styles/tailwind.css",
|
||||
"start": "rescript build -w",
|
||||
"clean": "rescript clean",
|
||||
|
@ -38,8 +39,8 @@
|
|||
"bs-css": "^15.1.0",
|
||||
"bs-css-dom": "^3.1.0",
|
||||
"bs-moment": "0.6.0",
|
||||
"bs-reform": "^10.0.3",
|
||||
"bsb-js": "1.1.7",
|
||||
"css-loader": "^6.6.0",
|
||||
"d3": "7.3.0",
|
||||
"gh-pages": "2.2.0",
|
||||
"jest": "^25.5.1",
|
||||
|
@ -51,17 +52,16 @@
|
|||
"moduleserve": "0.9.1",
|
||||
"moment": "2.24.0",
|
||||
"pdfast": "^0.2.0",
|
||||
"postcss-cli": "7.1.0",
|
||||
"postcss-cli": "^9.1.0",
|
||||
"rationale": "0.2.0",
|
||||
"react": "^16.10.0",
|
||||
"react": "17.0.2",
|
||||
"react-ace": "^9.2.0",
|
||||
"react-dom": "^0.13.0 || ^0.14.0 || ^15.0.1 || ^16.0.0",
|
||||
"react-dom": "^17.0.2",
|
||||
"react-use": "^17.3.2",
|
||||
"react-vega": "^7.4.4",
|
||||
"reason-react": ">=0.7.0",
|
||||
"reschema": "^2.2.0",
|
||||
"rescript": "^9.1.4",
|
||||
"squiggle-experimental": "^0.1.8",
|
||||
"@foretold-app/squiggle": "^0.1.9",
|
||||
"tailwindcss": "1.2.0",
|
||||
"vega": "*",
|
||||
"vega-embed": "6.6.0",
|
||||
|
@ -69,9 +69,9 @@
|
|||
},
|
||||
"devDependencies": {
|
||||
"@glennsl/bs-jest": "^0.5.1",
|
||||
"bs-platform": "9.0.2",
|
||||
"bs-platform": "8.4.2",
|
||||
"docsify": "^4.12.2",
|
||||
"parcel-bundler": "1.12.4",
|
||||
"parcel-bundler": "^1.12.5",
|
||||
"parcel-plugin-bundle-visualiser": "^1.2.0",
|
||||
"parcel-plugin-less-js-enabled": "1.0.2"
|
||||
},
|
||||
|
|
|
@ -5,4 +5,4 @@
|
|||
tailwindcss('./tailwind.js'),
|
||||
require('autoprefixer'),
|
||||
],
|
||||
};
|
||||
};
|
||||
|
|
|
@ -85,11 +85,6 @@ module O = {
|
|||
|
||||
let min = compare(\"<")
|
||||
let max = compare(\">")
|
||||
module React = {
|
||||
let defaultNull = default(React.null)
|
||||
let fmapOrNull = fn => \"||>"(fmap(fn), default(React.null))
|
||||
let flatten = default(React.null)
|
||||
}
|
||||
}
|
||||
|
||||
/* Functions */
|
||||
|
@ -196,18 +191,6 @@ module J = {
|
|||
}
|
||||
}
|
||||
|
||||
module M = {
|
||||
let format = MomentRe.Moment.format
|
||||
let format_standard = "MMM DD, YYYY HH:mm"
|
||||
let format_simple = "L"
|
||||
/* TODO: Figure out better name */
|
||||
let goFormat_simple = MomentRe.Moment.format(format_simple)
|
||||
let goFormat_standard = MomentRe.Moment.format(format_standard)
|
||||
let toUtc = MomentRe.momentUtc
|
||||
let toJSON = MomentRe.Moment.toJSON
|
||||
let momentDefaultFormat = MomentRe.momentDefaultFormat
|
||||
}
|
||||
|
||||
module JsDate = {
|
||||
let fromString = Js.Date.fromString
|
||||
let now = Js.Date.now
|
|
@ -97,7 +97,7 @@ module DemoDist = {
|
|||
<div>
|
||||
{switch options {
|
||||
| Some(options) =>
|
||||
let inputs1 = ProgramEvaluator.Inputs.make(
|
||||
let inputs1 = ForetoldAppSquiggle.ProgramEvaluator.Inputs.make(
|
||||
~samplingInputs={
|
||||
sampleCount: Some(options.sampleCount),
|
||||
outputXYPoints: Some(options.outputXYPoints),
|
||||
|
@ -114,15 +114,15 @@ module DemoDist = {
|
|||
(),
|
||||
)
|
||||
|
||||
let distributionList = ProgramEvaluator.evaluateProgram(inputs1)
|
||||
let distributionList = ForetoldAppSquiggle.ProgramEvaluator.evaluateProgram(inputs1)
|
||||
|
||||
let renderExpression = response1 =>
|
||||
switch response1 {
|
||||
| #DistPlus(distPlus1) => <DistPlusPlot distPlus={DistPlus.T.normalize(distPlus1)} />
|
||||
| #DistPlus(distPlus1) => <DistPlusPlot distPlus={ForetoldAppSquiggle.DistPlus.T.normalize(distPlus1)} />
|
||||
| #Float(f) => <NumberShower number=f precision=3 />
|
||||
| #Function((f, a), env) =>
|
||||
// Problem: When it gets the function, it doesn't save state about previous commands
|
||||
let foo: ProgramEvaluator.Inputs.inputs = {
|
||||
let foo: ForetoldAppSquiggle.ProgramEvaluator.Inputs.inputs = {
|
||||
squiggleString: squiggleString,
|
||||
samplingInputs: inputs1.samplingInputs,
|
||||
environment: env,
|
||||
|
@ -130,13 +130,13 @@ module DemoDist = {
|
|||
let results =
|
||||
E.A.Floats.range(options.diagramStart, options.diagramStop, options.diagramCount)
|
||||
|> E.A.fmap(r =>
|
||||
ProgramEvaluator.evaluateFunction(
|
||||
ForetoldAppSquiggle.ProgramEvaluator.evaluateFunction(
|
||||
foo,
|
||||
(f, a),
|
||||
[#SymbolicDist(#Float(r))],
|
||||
) |> E.R.bind(_, a =>
|
||||
switch a {
|
||||
| #DistPlus(d) => Ok((r, DistPlus.T.normalize(d)))
|
||||
| #DistPlus(d) => Ok((r, ForetoldAppSquiggle.DistPlus.T.normalize(d)))
|
||||
| n =>
|
||||
Js.log2("Error here", n)
|
||||
Error("wrong type")
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
open DistPlusPlotReducer
|
||||
let plotBlue = #hex("1860ad")
|
||||
|
||||
let showAsForm = (distPlus: DistTypes.distPlus) =>
|
||||
let showAsForm = (distPlus: ForetoldAppSquiggle.DistTypes.distPlus) =>
|
||||
<div> <Antd.Input value={distPlus.squiggleString |> E.O.default("")} /> </div>
|
||||
|
||||
let showFloat = (~precision=3, number) => <NumberShower number precision />
|
||||
|
@ -23,27 +23,27 @@ let table = (distPlus, x) =>
|
|||
<td className="px-4 py-2 border"> {x |> E.Float.toString |> React.string} </td>
|
||||
<td className="px-4 py-2 border ">
|
||||
{distPlus
|
||||
|> DistPlus.T.xToY(x)
|
||||
|> DistTypes.MixedPoint.toDiscreteValue
|
||||
|> ForetoldAppSquiggle.DistPlus.T.xToY(x)
|
||||
|> ForetoldAppSquiggle.DistTypes.MixedPoint.toDiscreteValue
|
||||
|> Js.Float.toPrecisionWithPrecision(_, ~digits=7)
|
||||
|> React.string}
|
||||
</td>
|
||||
<td className="px-4 py-2 border ">
|
||||
{distPlus
|
||||
|> DistPlus.T.xToY(x)
|
||||
|> DistTypes.MixedPoint.toContinuousValue
|
||||
|> ForetoldAppSquiggle.DistPlus.T.xToY(x)
|
||||
|> ForetoldAppSquiggle.DistTypes.MixedPoint.toContinuousValue
|
||||
|> Js.Float.toPrecisionWithPrecision(_, ~digits=7)
|
||||
|> React.string}
|
||||
</td>
|
||||
<td className="px-4 py-2 border ">
|
||||
{distPlus
|
||||
|> DistPlus.T.Integral.xToY(x)
|
||||
|> ForetoldAppSquiggle.DistPlus.T.Integral.xToY(x)
|
||||
|> E.Float.with2DigitsPrecision
|
||||
|> React.string}
|
||||
</td>
|
||||
<td className="px-4 py-2 border ">
|
||||
{distPlus
|
||||
|> DistPlus.T.Integral.sum
|
||||
|> ForetoldAppSquiggle.DistPlus.T.Integral.sum
|
||||
|> E.Float.with2DigitsPrecision
|
||||
|> React.string}
|
||||
</td>
|
||||
|
@ -61,16 +61,16 @@ let table = (distPlus, x) =>
|
|||
<tr>
|
||||
<td className="px-4 py-2 border">
|
||||
{distPlus
|
||||
|> DistPlus.T.toContinuous
|
||||
|> E.O.fmap(Continuous.T.Integral.sum)
|
||||
|> ForetoldAppSquiggle.DistPlus.T.toContinuous
|
||||
|> E.O.fmap(ForetoldAppSquiggle.Continuous.T.Integral.sum)
|
||||
|> E.O.fmap(E.Float.with2DigitsPrecision)
|
||||
|> E.O.default("")
|
||||
|> React.string}
|
||||
</td>
|
||||
<td className="px-4 py-2 border ">
|
||||
{distPlus
|
||||
|> DistPlus.T.toDiscrete
|
||||
|> E.O.fmap(Discrete.T.Integral.sum)
|
||||
|> ForetoldAppSquiggle.DistPlus.T.toDiscrete
|
||||
|> E.O.fmap(ForetoldAppSquiggle.Discrete.T.Integral.sum)
|
||||
|> E.O.fmap(E.Float.with2DigitsPrecision)
|
||||
|> E.O.default("")
|
||||
|> React.string}
|
||||
|
@ -97,28 +97,28 @@ let percentiles = distPlus =>
|
|||
<tbody>
|
||||
<tr>
|
||||
<td className="px-4 py-2 border">
|
||||
{distPlus |> DistPlus.T.Integral.yToX(0.01) |> showFloat}
|
||||
{distPlus |> ForetoldAppSquiggle.DistPlus.T.Integral.yToX(0.01) |> showFloat}
|
||||
</td>
|
||||
<td className="px-4 py-2 border">
|
||||
{distPlus |> DistPlus.T.Integral.yToX(0.05) |> showFloat}
|
||||
{distPlus |> ForetoldAppSquiggle.DistPlus.T.Integral.yToX(0.05) |> showFloat}
|
||||
</td>
|
||||
<td className="px-4 py-2 border">
|
||||
{distPlus |> DistPlus.T.Integral.yToX(0.25) |> showFloat}
|
||||
{distPlus |> ForetoldAppSquiggle.DistPlus.T.Integral.yToX(0.25) |> showFloat}
|
||||
</td>
|
||||
<td className="px-4 py-2 border">
|
||||
{distPlus |> DistPlus.T.Integral.yToX(0.5) |> showFloat}
|
||||
{distPlus |> ForetoldAppSquiggle.DistPlus.T.Integral.yToX(0.5) |> showFloat}
|
||||
</td>
|
||||
<td className="px-4 py-2 border">
|
||||
{distPlus |> DistPlus.T.Integral.yToX(0.75) |> showFloat}
|
||||
{distPlus |> ForetoldAppSquiggle.DistPlus.T.Integral.yToX(0.75) |> showFloat}
|
||||
</td>
|
||||
<td className="px-4 py-2 border">
|
||||
{distPlus |> DistPlus.T.Integral.yToX(0.95) |> showFloat}
|
||||
{distPlus |> ForetoldAppSquiggle.DistPlus.T.Integral.yToX(0.95) |> showFloat}
|
||||
</td>
|
||||
<td className="px-4 py-2 border">
|
||||
{distPlus |> DistPlus.T.Integral.yToX(0.99) |> showFloat}
|
||||
{distPlus |> ForetoldAppSquiggle.DistPlus.T.Integral.yToX(0.99) |> showFloat}
|
||||
</td>
|
||||
<td className="px-4 py-2 border">
|
||||
{distPlus |> DistPlus.T.Integral.yToX(0.99999) |> showFloat}
|
||||
{distPlus |> ForetoldAppSquiggle.DistPlus.T.Integral.yToX(0.99999) |> showFloat}
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
|
@ -133,11 +133,11 @@ let percentiles = distPlus =>
|
|||
</thead>
|
||||
<tbody>
|
||||
<tr>
|
||||
<td className="px-4 py-2 border"> {distPlus |> DistPlus.T.mean |> showFloat} </td>
|
||||
<td className="px-4 py-2 border"> {distPlus |> ForetoldAppSquiggle.DistPlus.T.mean |> showFloat} </td>
|
||||
<td className="px-4 py-2 border">
|
||||
{distPlus |> DistPlus.T.variance |> (r => r ** 0.5) |> showFloat}
|
||||
{distPlus |> ForetoldAppSquiggle.DistPlus.T.variance |> (r => r ** 0.5) |> showFloat}
|
||||
</td>
|
||||
<td className="px-4 py-2 border"> {distPlus |> DistPlus.T.variance |> showFloat} </td>
|
||||
<td className="px-4 py-2 border"> {distPlus |> ForetoldAppSquiggle.DistPlus.T.variance |> showFloat} </td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
@ -155,11 +155,11 @@ let adjustBoth = discreteProbabilityMassFraction => {
|
|||
|
||||
module DistPlusChart = {
|
||||
@react.component
|
||||
let make = (~distPlus: DistTypes.distPlus, ~config: chartConfig, ~onHover) => {
|
||||
open DistPlus
|
||||
let make = (~distPlus: ForetoldAppSquiggle.DistTypes.distPlus, ~config: chartConfig, ~onHover) => {
|
||||
open ForetoldAppSquiggle.DistPlus
|
||||
|
||||
let discrete = distPlus |> T.toDiscrete |> E.O.fmap(Discrete.getShape)
|
||||
let continuous = distPlus |> T.toContinuous |> E.O.fmap(Continuous.getShape)
|
||||
let discrete = distPlus |> T.toDiscrete |> E.O.fmap(ForetoldAppSquiggle.Discrete.getShape)
|
||||
let continuous = distPlus |> T.toContinuous |> E.O.fmap(ForetoldAppSquiggle.Continuous.getShape)
|
||||
|
||||
// // We subtract a bit from the range to make sure that it fits. Maybe this should be done in d3 instead.
|
||||
// let minX =
|
||||
|
@ -172,12 +172,12 @@ module DistPlusChart = {
|
|||
// | _ => None
|
||||
// };
|
||||
|
||||
let minX = distPlus |> DistPlus.T.Integral.yToX(0.00001)
|
||||
let minX = distPlus |> T.Integral.yToX(0.00001)
|
||||
|
||||
let maxX = distPlus |> DistPlus.T.Integral.yToX(0.99999)
|
||||
let maxX = distPlus |> T.Integral.yToX(0.99999)
|
||||
|
||||
let timeScale = distPlus.unit |> DistTypes.DistributionUnit.toJson
|
||||
let discreteProbabilityMassFraction = distPlus |> DistPlus.T.toDiscreteProbabilityMassFraction
|
||||
let timeScale = distPlus.unit |> ForetoldAppSquiggle.DistTypes.DistributionUnit.toJson
|
||||
let discreteProbabilityMassFraction = distPlus |> T.toDiscreteProbabilityMassFraction
|
||||
|
||||
let (yMaxDiscreteDomainFactor, yMaxContinuousDomainFactor) = adjustBoth(
|
||||
discreteProbabilityMassFraction,
|
||||
|
@ -202,13 +202,13 @@ module DistPlusChart = {
|
|||
|
||||
module IntegralChart = {
|
||||
@react.component
|
||||
let make = (~distPlus: DistTypes.distPlus, ~config: chartConfig, ~onHover) => {
|
||||
let make = (~distPlus: ForetoldAppSquiggle.DistTypes.distPlus, ~config: chartConfig, ~onHover) => {
|
||||
let integral = distPlus.integralCache
|
||||
let continuous = integral |> Continuous.toLinear |> E.O.fmap(Continuous.getShape)
|
||||
let minX = distPlus |> DistPlus.T.Integral.yToX(0.00001)
|
||||
let continuous = integral |> ForetoldAppSquiggle.Continuous.toLinear |> E.O.fmap(ForetoldAppSquiggle.Continuous.getShape)
|
||||
let minX = distPlus |> ForetoldAppSquiggle.DistPlus.T.Integral.yToX(0.00001)
|
||||
|
||||
let maxX = distPlus |> DistPlus.T.Integral.yToX(0.99999)
|
||||
let timeScale = distPlus.unit |> DistTypes.DistributionUnit.toJson
|
||||
let maxX = distPlus |> ForetoldAppSquiggle.DistPlus.T.Integral.yToX(0.99999)
|
||||
let timeScale = distPlus.unit |> ForetoldAppSquiggle.DistTypes.DistributionUnit.toJson
|
||||
<DistributionPlot
|
||||
xScale={config.xLog ? "log" : "linear"}
|
||||
yScale={config.yLog ? "log" : "linear"}
|
||||
|
@ -225,7 +225,7 @@ module IntegralChart = {
|
|||
|
||||
module Chart = {
|
||||
@react.component
|
||||
let make = (~distPlus: DistTypes.distPlus, ~config: chartConfig, ~onHover) => {
|
||||
let make = (~distPlus: ForetoldAppSquiggle.DistTypes.distPlus, ~config: chartConfig, ~onHover) => {
|
||||
let chart = React.useMemo2(
|
||||
() =>
|
||||
config.isCumulative
|
||||
|
@ -246,7 +246,7 @@ module Chart = {
|
|||
let button = "bg-gray-300 hover:bg-gray-500 text-grey-darkest text-xs px-4 py-1"
|
||||
|
||||
@react.component
|
||||
let make = (~distPlus: DistTypes.distPlus) => {
|
||||
let make = (~distPlus: ForetoldAppSquiggle.DistTypes.distPlus) => {
|
||||
let (x, setX) = React.useState(() => 0.)
|
||||
let (state, dispatch) = React.useReducer(DistPlusPlotReducer.reducer, DistPlusPlotReducer.init)
|
||||
|
||||
|
|
|
@ -95,12 +95,12 @@ let make = (
|
|||
?xScale
|
||||
?yScale
|
||||
?timeScale
|
||||
discrete={discrete |> E.O.fmap(XYShape.T.toJs)}
|
||||
discrete={discrete |> E.O.fmap(ForetoldAppSquiggle.XYShape.T.toJs)}
|
||||
height
|
||||
marginBottom=50
|
||||
marginTop=0
|
||||
onHover
|
||||
continuous={continuous |> E.O.fmap(XYShape.T.toJs)}
|
||||
continuous={continuous |> E.O.fmap(ForetoldAppSquiggle.XYShape.T.toJs)}
|
||||
showDistributionLines
|
||||
showDistributionYAxis
|
||||
showVerticalLine
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
open ForetoldAppSquiggle
|
||||
@module("./PercentilesChart.js")
|
||||
external percentilesChart: React.element = "PercentilesChart"
|
||||
|
||||
|
@ -30,7 +31,7 @@ module Internal = {
|
|||
@react.component
|
||||
@module("./PercentilesChart.js")
|
||||
let make = (~dists: array<(float, DistTypes.distPlus)>, ~children=React.null) => {
|
||||
let data = dists |> E.A.fmap(((x, r)) =>
|
||||
let data = dists -> Belt.Array.map(((x, r)) =>
|
||||
{
|
||||
"x": x,
|
||||
"p1": r |> DistPlus.T.Integral.yToX(0.01),
|
||||
|
|
|
@ -20,8 +20,8 @@ let make = (~number, ~precision) => {
|
|||
let numberWithPresentation = JS.numberShow(number, precision)
|
||||
<span>
|
||||
{JS.valueGet(numberWithPresentation) |> React.string}
|
||||
{JS.symbolGet(numberWithPresentation) |> E.O.React.fmapOrNull(React.string)}
|
||||
{JS.powerGet(numberWithPresentation) |> E.O.React.fmapOrNull(e =>
|
||||
{JS.symbolGet(numberWithPresentation) |> R.O.fmapOrNull(React.string)}
|
||||
{JS.powerGet(numberWithPresentation) |> R.O.fmapOrNull(e =>
|
||||
<span>
|
||||
{j`\\u00b710` |> React.string}
|
||||
<span style=sup> {e |> E.Float.toString |> React.string} </span>
|
||||
|
|
|
@ -1,171 +0,0 @@
|
|||
// TODO: This setup is more confusing than it should be, there's more work to do in cleanup here.
|
||||
module Inputs = {
|
||||
module SamplingInputs = {
|
||||
type t = {
|
||||
sampleCount: option<int>,
|
||||
outputXYPoints: option<int>,
|
||||
kernelWidth: option<float>,
|
||||
shapeLength: option<int>,
|
||||
}
|
||||
}
|
||||
let defaultRecommendedLength = 100
|
||||
let defaultShouldDownsample = true
|
||||
|
||||
type inputs = {
|
||||
squiggleString: string,
|
||||
samplingInputs: SamplingInputs.t,
|
||||
environment: ExpressionTypes.ExpressionTree.environment,
|
||||
}
|
||||
|
||||
let empty: SamplingInputs.t = {
|
||||
sampleCount: None,
|
||||
outputXYPoints: None,
|
||||
kernelWidth: None,
|
||||
shapeLength: None,
|
||||
}
|
||||
|
||||
let make = (
|
||||
~samplingInputs=empty,
|
||||
~squiggleString,
|
||||
~environment=ExpressionTypes.ExpressionTree.Environment.empty,
|
||||
(),
|
||||
): inputs => {
|
||||
samplingInputs: samplingInputs,
|
||||
squiggleString: squiggleString,
|
||||
environment: environment,
|
||||
}
|
||||
}
|
||||
|
||||
type \"export" = [
|
||||
| #DistPlus(ProbExample.DistPlus.t)
|
||||
| #Float(float)
|
||||
| #Function(
|
||||
(array<string>, ProbExample.ExpressionTypes.ExpressionTree.node),
|
||||
ProbExample.ExpressionTypes.ExpressionTree.environment,
|
||||
)
|
||||
]
|
||||
|
||||
module Internals = {
|
||||
let addVariable = (
|
||||
{samplingInputs, squiggleString, environment}: Inputs.inputs,
|
||||
str,
|
||||
node,
|
||||
): Inputs.inputs => {
|
||||
samplingInputs: samplingInputs,
|
||||
squiggleString: squiggleString,
|
||||
environment: ExpressionTypes.ExpressionTree.Environment.update(environment, str, _ => Some(
|
||||
node,
|
||||
)),
|
||||
}
|
||||
|
||||
type outputs = {
|
||||
graph: ExpressionTypes.ExpressionTree.node,
|
||||
shape: DistTypes.shape,
|
||||
}
|
||||
let makeOutputs = (graph, shape): outputs => {graph: graph, shape: shape}
|
||||
|
||||
let makeInputs = (inputs: Inputs.inputs): ExpressionTypes.ExpressionTree.samplingInputs => {
|
||||
sampleCount: inputs.samplingInputs.sampleCount |> E.O.default(10000),
|
||||
outputXYPoints: inputs.samplingInputs.outputXYPoints |> E.O.default(10000),
|
||||
kernelWidth: inputs.samplingInputs.kernelWidth,
|
||||
shapeLength: inputs.samplingInputs.shapeLength |> E.O.default(10000),
|
||||
}
|
||||
|
||||
let runNode = (inputs, node) =>
|
||||
ExpressionTree.toLeaf(makeInputs(inputs), inputs.environment, node)
|
||||
|
||||
let runProgram = (inputs: Inputs.inputs, p: ExpressionTypes.Program.program) => {
|
||||
let ins = ref(inputs)
|
||||
p
|
||||
|> E.A.fmap(x =>
|
||||
switch x {
|
||||
| #Assignment(name, node) =>
|
||||
ins := addVariable(ins.contents, name, node)
|
||||
None
|
||||
| #Expression(node) =>
|
||||
Some(runNode(ins.contents, node) |> E.R.fmap(r => (ins.contents.environment, r)))
|
||||
}
|
||||
)
|
||||
|> E.A.O.concatSomes
|
||||
|> E.A.R.firstErrorOrOpen
|
||||
}
|
||||
|
||||
let inputsToLeaf = (inputs: Inputs.inputs) =>
|
||||
MathJsParser.fromString(inputs.squiggleString)
|
||||
|> E.R.bind(_, g => runProgram(inputs, g))
|
||||
|
||||
let outputToDistPlus = (inputs: Inputs.inputs, shape: DistTypes.shape) =>
|
||||
DistPlus.make(~shape, ~squiggleString=Some(inputs.squiggleString), ())
|
||||
}
|
||||
|
||||
let renderIfNeeded = (inputs: Inputs.inputs, node: ExpressionTypes.ExpressionTree.node): result<
|
||||
ExpressionTypes.ExpressionTree.node,
|
||||
string,
|
||||
> =>
|
||||
node |> (
|
||||
x =>
|
||||
switch x {
|
||||
| #Normalize(_) as n
|
||||
| #SymbolicDist(_) as n =>
|
||||
#Render(n)
|
||||
|> Internals.runNode(inputs)
|
||||
|> (
|
||||
x =>
|
||||
switch x {
|
||||
| Ok(#RenderedDist(_)) as r => r
|
||||
| Error(r) => Error(r)
|
||||
| _ => Error("Didn't render, but intended to")
|
||||
}
|
||||
)
|
||||
| n => Ok(n)
|
||||
}
|
||||
)
|
||||
|
||||
// TODO: Consider using ExpressionTypes.ExpressionTree.getFloat or similar in this function
|
||||
let coersionToExportedTypes = (
|
||||
inputs,
|
||||
env: ProbExample.ExpressionTypes.ExpressionTree.environment,
|
||||
node: ExpressionTypes.ExpressionTree.node,
|
||||
): result<\"export", string> =>
|
||||
node
|
||||
|> renderIfNeeded(inputs)
|
||||
|> E.R.bind(_, x =>
|
||||
switch x {
|
||||
| #RenderedDist(Discrete({xyShape: {xs: [x], ys: [1.0]}})) => Ok(#Float(x))
|
||||
| #SymbolicDist(#Float(x)) => Ok(#Float(x))
|
||||
| #RenderedDist(n) => Ok(#DistPlus(Internals.outputToDistPlus(inputs, n)))
|
||||
| #Function(n) => Ok(#Function(n, env))
|
||||
| n => Error("Didn't output a rendered distribution. Format:" ++ ExpressionTree.toString(n))
|
||||
}
|
||||
)
|
||||
|
||||
let rec mapM = (f, xs) =>
|
||||
switch xs {
|
||||
| list{} => Ok(list{})
|
||||
| list{x, ...rest} =>
|
||||
switch f(x) {
|
||||
| Error(err) => Error(err)
|
||||
| Ok(val) =>
|
||||
switch mapM(f, rest) {
|
||||
| Error(err) => Error(err)
|
||||
| Ok(restList) => Ok(list{val, ...restList})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let evaluateProgram = (inputs: Inputs.inputs) =>
|
||||
inputs |> Internals.inputsToLeaf |> E.R.bind(_, xs => mapM(((a, b)) => coersionToExportedTypes(inputs, a, b), (Array.to_list(xs))))
|
||||
|
||||
let evaluateFunction = (
|
||||
inputs: Inputs.inputs,
|
||||
fn: (array<string>, ExpressionTypes.ExpressionTree.node),
|
||||
fnInputs,
|
||||
) => {
|
||||
let output = ExpressionTree.runFunction(
|
||||
Internals.makeInputs(inputs),
|
||||
inputs.environment,
|
||||
fnInputs,
|
||||
fn,
|
||||
)
|
||||
output |> E.R.bind(_, coersionToExportedTypes(inputs, inputs.environment))
|
||||
}
|
|
@ -1,298 +0,0 @@
|
|||
type pointMassesWithMoments = {
|
||||
n: int,
|
||||
masses: array(float),
|
||||
means: array(float),
|
||||
variances: array(float),
|
||||
};
|
||||
|
||||
/* This function takes a continuous distribution and efficiently approximates it as
|
||||
point masses that have variances associated with them.
|
||||
We estimate the means and variances from overlapping triangular distributions which we imagine are making up the
|
||||
XYShape.
|
||||
We can then use the algebra of random variables to "convolve" the point masses and their variances,
|
||||
and finally reconstruct a new distribution from them, e.g. using a Fast Gauss Transform or Raykar et al. (2007). */
|
||||
let toDiscretePointMassesFromTriangulars =
|
||||
(~inverse=false, s: XYShape.T.t): pointMassesWithMoments => {
|
||||
// TODO: what if there is only one point in the distribution?
|
||||
let n = s |> XYShape.T.length;
|
||||
// first, double up the leftmost and rightmost points:
|
||||
let {xs, ys}: XYShape.T.t = s;
|
||||
Js.Array.unshift(xs[0], xs) |> ignore;
|
||||
Js.Array.unshift(ys[0], ys) |> ignore;
|
||||
Js.Array.push(xs[n - 1], xs) |> ignore;
|
||||
Js.Array.push(ys[n - 1], ys) |> ignore;
|
||||
let n = E.A.length(xs);
|
||||
// squares and neighbourly products of the xs
|
||||
let xsSq: array(float) = Belt.Array.makeUninitializedUnsafe(n);
|
||||
let xsProdN1: array(float) = Belt.Array.makeUninitializedUnsafe(n - 1);
|
||||
let xsProdN2: array(float) = Belt.Array.makeUninitializedUnsafe(n - 2);
|
||||
for (i in 0 to n - 1) {
|
||||
Belt.Array.set(xsSq, i, xs[i] *. xs[i]) |> ignore;
|
||||
();
|
||||
};
|
||||
for (i in 0 to n - 2) {
|
||||
Belt.Array.set(xsProdN1, i, xs[i] *. xs[i + 1]) |> ignore;
|
||||
();
|
||||
};
|
||||
for (i in 0 to n - 3) {
|
||||
Belt.Array.set(xsProdN2, i, xs[i] *. xs[i + 2]) |> ignore;
|
||||
();
|
||||
};
|
||||
// means and variances
|
||||
let masses: array(float) = Belt.Array.makeUninitializedUnsafe(n - 2); // doesn't include the fake first and last points
|
||||
let means: array(float) = Belt.Array.makeUninitializedUnsafe(n - 2);
|
||||
let variances: array(float) = Belt.Array.makeUninitializedUnsafe(n - 2);
|
||||
|
||||
if (inverse) {
|
||||
for (i in 1 to n - 2) {
|
||||
Belt.Array.set(masses, i - 1, (xs[i + 1] -. xs[i - 1]) *. ys[i] /. 2.)
|
||||
|> ignore;
|
||||
|
||||
// this only works when the whole triange is either on the left or on the right of zero
|
||||
let a = xs[i - 1];
|
||||
let c = xs[i];
|
||||
let b = xs[i + 1];
|
||||
|
||||
// These are the moments of the reciprocal of a triangular distribution, as symbolically integrated by Mathematica.
|
||||
// They're probably pretty close to invMean ~ 1/mean = 3/(a+b+c) and invVar. But I haven't worked out
|
||||
// the worst case error, so for now let's use these monster equations
|
||||
let inverseMean =
|
||||
2.
|
||||
*. (a *. log(a /. c) /. (a -. c) +. b *. log(c /. b) /. (b -. c))
|
||||
/. (a -. b);
|
||||
let inverseVar =
|
||||
2.
|
||||
*. (log(c /. a) /. (a -. c) +. b *. log(b /. c) /. (b -. c))
|
||||
/. (a -. b)
|
||||
-. inverseMean
|
||||
** 2.;
|
||||
|
||||
Belt.Array.set(means, i - 1, inverseMean) |> ignore;
|
||||
|
||||
Belt.Array.set(variances, i - 1, inverseVar) |> ignore;
|
||||
();
|
||||
};
|
||||
|
||||
{n: n - 2, masses, means, variances};
|
||||
} else {
|
||||
for (i in 1 to n - 2) {
|
||||
// area of triangle = width * height / 2
|
||||
Belt.Array.set(masses, i - 1, (xs[i + 1] -. xs[i - 1]) *. ys[i] /. 2.)
|
||||
|> ignore;
|
||||
|
||||
// means of triangle = (a + b + c) / 3
|
||||
Belt.Array.set(means, i - 1, (xs[i - 1] +. xs[i] +. xs[i + 1]) /. 3.)
|
||||
|> ignore;
|
||||
|
||||
// variance of triangle = (a^2 + b^2 + c^2 - ab - ac - bc) / 18
|
||||
Belt.Array.set(
|
||||
variances,
|
||||
i - 1,
|
||||
(
|
||||
xsSq[i - 1]
|
||||
+. xsSq[i]
|
||||
+. xsSq[i + 1]
|
||||
-. xsProdN1[i - 1]
|
||||
-. xsProdN1[i]
|
||||
-. xsProdN2[i - 1]
|
||||
)
|
||||
/. 18.,
|
||||
)
|
||||
|> ignore;
|
||||
();
|
||||
};
|
||||
{n: n - 2, masses, means, variances};
|
||||
};
|
||||
};
|
||||
|
||||
let combineShapesContinuousContinuous =
|
||||
(
|
||||
op: ExpressionTypes.algebraicOperation,
|
||||
s1: DistTypes.xyShape,
|
||||
s2: DistTypes.xyShape,
|
||||
)
|
||||
: DistTypes.xyShape => {
|
||||
let t1n = s1 |> XYShape.T.length;
|
||||
let t2n = s2 |> XYShape.T.length;
|
||||
|
||||
// if we add the two distributions, we should probably use normal filters.
|
||||
// if we multiply the two distributions, we should probably use lognormal filters.
|
||||
let t1m = toDiscretePointMassesFromTriangulars(s1);
|
||||
let t2m =
|
||||
switch (op) {
|
||||
| `Divide => toDiscretePointMassesFromTriangulars(~inverse=true, s2)
|
||||
| _ => toDiscretePointMassesFromTriangulars(~inverse=false, s2)
|
||||
};
|
||||
|
||||
let combineMeansFn =
|
||||
switch (op) {
|
||||
| `Add => ((m1, m2) => m1 +. m2)
|
||||
| `Subtract => ((m1, m2) => m1 -. m2)
|
||||
| `Multiply => ((m1, m2) => m1 *. m2)
|
||||
| `Divide => ((m1, mInv2) => m1 *. mInv2)
|
||||
| `Exponentiate => ((m1, mInv2) => m1 ** mInv2)
|
||||
}; // note: here, mInv2 = mean(1 / t2) ~= 1 / mean(t2)
|
||||
|
||||
// TODO: I don't know what the variances are for exponentatiation
|
||||
// converts the variances and means of the two inputs into the variance of the output
|
||||
let combineVariancesFn =
|
||||
switch (op) {
|
||||
| `Add => ((v1, v2, _, _) => v1 +. v2)
|
||||
| `Subtract => ((v1, v2, _, _) => v1 +. v2)
|
||||
| `Multiply => (
|
||||
(v1, v2, m1, m2) => v1 *. v2 +. v1 *. m2 ** 2. +. v2 *. m1 ** 2.
|
||||
)
|
||||
| `Exponentiate =>
|
||||
((v1, v2, m1, m2) => v1 *. v2 +. v1 *. m2 ** 2. +. v2 *. m1 ** 2.);
|
||||
| `Divide => (
|
||||
(v1, vInv2, m1, mInv2) =>
|
||||
v1 *. vInv2 +. v1 *. mInv2 ** 2. +. vInv2 *. m1 ** 2.
|
||||
)
|
||||
};
|
||||
|
||||
// TODO: If operating on two positive-domain distributions, we should take that into account
|
||||
let outputMinX: ref(float) = ref(infinity);
|
||||
let outputMaxX: ref(float) = ref(neg_infinity);
|
||||
let masses: array(float) =
|
||||
Belt.Array.makeUninitializedUnsafe(t1m.n * t2m.n);
|
||||
let means: array(float) =
|
||||
Belt.Array.makeUninitializedUnsafe(t1m.n * t2m.n);
|
||||
let variances: array(float) =
|
||||
Belt.Array.makeUninitializedUnsafe(t1m.n * t2m.n);
|
||||
// then convolve the two sets of pointMassesWithMoments
|
||||
for (i in 0 to t1m.n - 1) {
|
||||
for (j in 0 to t2m.n - 1) {
|
||||
let k = i * t2m.n + j;
|
||||
Belt.Array.set(masses, k, t1m.masses[i] *. t2m.masses[j]) |> ignore;
|
||||
|
||||
let mean = combineMeansFn(t1m.means[i], t2m.means[j]);
|
||||
let variance =
|
||||
combineVariancesFn(
|
||||
t1m.variances[i],
|
||||
t2m.variances[j],
|
||||
t1m.means[i],
|
||||
t2m.means[j],
|
||||
);
|
||||
Belt.Array.set(means, k, mean) |> ignore;
|
||||
Belt.Array.set(variances, k, variance) |> ignore;
|
||||
// update bounds
|
||||
let minX = mean -. 2. *. sqrt(variance) *. 1.644854;
|
||||
let maxX = mean +. 2. *. sqrt(variance) *. 1.644854;
|
||||
if (minX < outputMinX^) {
|
||||
outputMinX := minX;
|
||||
};
|
||||
if (maxX > outputMaxX^) {
|
||||
outputMaxX := maxX;
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
// we now want to create a set of target points. For now, let's just evenly distribute 200 points between
|
||||
// between the outputMinX and outputMaxX
|
||||
let nOut = 300;
|
||||
let outputXs: array(float) =
|
||||
E.A.Floats.range(outputMinX^, outputMaxX^, nOut);
|
||||
let outputYs: array(float) = Belt.Array.make(nOut, 0.0);
|
||||
// now, for each of the outputYs, accumulate from a Gaussian kernel over each input point.
|
||||
for (j in 0 to E.A.length(masses) - 1) {
|
||||
// go through all of the result points
|
||||
if (variances[j] > 0. && masses[j] > 0.) {
|
||||
for (i in 0 to E.A.length(outputXs) - 1) {
|
||||
// go through all of the target points
|
||||
let dx = outputXs[i] -. means[j];
|
||||
let contribution =
|
||||
masses[j]
|
||||
*. exp(-. (dx ** 2.) /. (2. *. variances[j]))
|
||||
/. sqrt(2. *. 3.14159276 *. variances[j]);
|
||||
Belt.Array.set(outputYs, i, outputYs[i] +. contribution) |> ignore;
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
{xs: outputXs, ys: outputYs};
|
||||
};
|
||||
|
||||
let toDiscretePointMassesFromDiscrete =
|
||||
(s: DistTypes.xyShape): pointMassesWithMoments => {
|
||||
let {xs, ys}: XYShape.T.t = s;
|
||||
let n = E.A.length(xs);
|
||||
|
||||
let masses: array(float) = Belt.Array.makeBy(n, i => ys[i]);
|
||||
let means: array(float) = Belt.Array.makeBy(n, i => xs[i]);
|
||||
let variances: array(float) = Belt.Array.makeBy(n, i => 0.0);
|
||||
|
||||
{n, masses, means, variances};
|
||||
};
|
||||
|
||||
let combineShapesContinuousDiscrete =
|
||||
(
|
||||
op: ExpressionTypes.algebraicOperation,
|
||||
continuousShape: DistTypes.xyShape,
|
||||
discreteShape: DistTypes.xyShape,
|
||||
)
|
||||
: DistTypes.xyShape => {
|
||||
let t1n = continuousShape |> XYShape.T.length;
|
||||
let t2n = discreteShape |> XYShape.T.length;
|
||||
|
||||
// each x pair is added/subtracted
|
||||
let fn = Operation.Algebraic.toFn(op);
|
||||
|
||||
let outXYShapes: array(array((float, float))) =
|
||||
Belt.Array.makeUninitializedUnsafe(t2n);
|
||||
|
||||
switch (op) {
|
||||
| `Add
|
||||
| `Subtract =>
|
||||
for (j in 0 to t2n - 1) {
|
||||
// creates a new continuous shape for each one of the discrete points, and collects them in outXYShapes.
|
||||
let dxyShape: array((float, float)) =
|
||||
Belt.Array.makeUninitializedUnsafe(t1n);
|
||||
for (i in 0 to t1n - 1) {
|
||||
Belt.Array.set(
|
||||
dxyShape,
|
||||
i,
|
||||
(
|
||||
fn(continuousShape.xs[i], discreteShape.xs[j]),
|
||||
continuousShape.ys[i] *. discreteShape.ys[j],
|
||||
),
|
||||
)
|
||||
|> ignore;
|
||||
();
|
||||
};
|
||||
Belt.Array.set(outXYShapes, j, dxyShape) |> ignore;
|
||||
();
|
||||
}
|
||||
| `Multiply
|
||||
| `Exponentiate
|
||||
| `Divide =>
|
||||
for (j in 0 to t2n - 1) {
|
||||
// creates a new continuous shape for each one of the discrete points, and collects them in outXYShapes.
|
||||
let dxyShape: array((float, float)) =
|
||||
Belt.Array.makeUninitializedUnsafe(t1n);
|
||||
for (i in 0 to t1n - 1) {
|
||||
Belt.Array.set(
|
||||
dxyShape,
|
||||
i,
|
||||
(
|
||||
fn(continuousShape.xs[i], discreteShape.xs[j]),
|
||||
{continuousShape.ys[i] *. discreteShape.ys[j] /. discreteShape.xs[j]}
|
||||
),
|
||||
)
|
||||
|> ignore;
|
||||
();
|
||||
};
|
||||
Belt.Array.set(outXYShapes, j, dxyShape) |> ignore;
|
||||
();
|
||||
}
|
||||
};
|
||||
|
||||
outXYShapes
|
||||
|> E.A.fmap(XYShape.T.fromZippedArray)
|
||||
|> E.A.fold_left(
|
||||
XYShape.PointwiseCombination.combine(
|
||||
(+.),
|
||||
XYShape.XtoY.continuousInterpolator(`Linear, `UseZero),
|
||||
),
|
||||
XYShape.T.empty,
|
||||
);
|
||||
};
|
|
@ -1,332 +0,0 @@
|
|||
open Distributions;
|
||||
|
||||
type t = DistTypes.continuousShape;
|
||||
let getShape = (t: t) => t.xyShape;
|
||||
let interpolation = (t: t) => t.interpolation;
|
||||
let make =
|
||||
(
|
||||
~interpolation=`Linear,
|
||||
~integralSumCache=None,
|
||||
~integralCache=None,
|
||||
xyShape,
|
||||
)
|
||||
: t => {
|
||||
xyShape,
|
||||
interpolation,
|
||||
integralSumCache,
|
||||
integralCache,
|
||||
};
|
||||
let shapeMap =
|
||||
(fn, {xyShape, interpolation, integralSumCache, integralCache}: t): t => {
|
||||
xyShape: fn(xyShape),
|
||||
interpolation,
|
||||
integralSumCache,
|
||||
integralCache,
|
||||
};
|
||||
let lastY = (t: t) => t |> getShape |> XYShape.T.lastY;
|
||||
let oShapeMap =
|
||||
(fn, {xyShape, interpolation, integralSumCache, integralCache}: t)
|
||||
: option(DistTypes.continuousShape) =>
|
||||
fn(xyShape)
|
||||
|> E.O.fmap(make(~interpolation, ~integralSumCache, ~integralCache));
|
||||
|
||||
let emptyIntegral: DistTypes.continuousShape = {
|
||||
xyShape: {
|
||||
xs: [|neg_infinity|],
|
||||
ys: [|0.0|],
|
||||
},
|
||||
interpolation: `Linear,
|
||||
integralSumCache: Some(0.0),
|
||||
integralCache: None,
|
||||
};
|
||||
let empty: DistTypes.continuousShape = {
|
||||
xyShape: XYShape.T.empty,
|
||||
interpolation: `Linear,
|
||||
integralSumCache: Some(0.0),
|
||||
integralCache: Some(emptyIntegral),
|
||||
};
|
||||
|
||||
let stepwiseToLinear = (t: t): t =>
|
||||
make(
|
||||
~integralSumCache=t.integralSumCache,
|
||||
~integralCache=t.integralCache,
|
||||
XYShape.Range.stepwiseToLinear(t.xyShape),
|
||||
);
|
||||
|
||||
// Note: This results in a distribution with as many points as the sum of those in t1 and t2.
|
||||
let combinePointwise =
|
||||
(
|
||||
~integralSumCachesFn=(_, _) => None,
|
||||
~integralCachesFn: (t, t) => option(t)=(_, _) => None,
|
||||
~distributionType: DistTypes.distributionType=`PDF,
|
||||
fn: (float, float) => float,
|
||||
t1: DistTypes.continuousShape,
|
||||
t2: DistTypes.continuousShape,
|
||||
)
|
||||
: DistTypes.continuousShape => {
|
||||
// If we're adding the distributions, and we know the total of each, then we
|
||||
// can just sum them up. Otherwise, all bets are off.
|
||||
let combinedIntegralSum =
|
||||
Common.combineIntegralSums(
|
||||
integralSumCachesFn,
|
||||
t1.integralSumCache,
|
||||
t2.integralSumCache,
|
||||
);
|
||||
|
||||
// TODO: does it ever make sense to pointwise combine the integrals here?
|
||||
// It could be done for pointwise additions, but is that ever needed?
|
||||
|
||||
// If combining stepwise and linear, we must convert the stepwise to linear first,
|
||||
// i.e. add a point at the bottom of each step
|
||||
let (t1, t2) =
|
||||
switch (t1.interpolation, t2.interpolation) {
|
||||
| (`Linear, `Linear) => (t1, t2)
|
||||
| (`Stepwise, `Stepwise) => (t1, t2)
|
||||
| (`Linear, `Stepwise) => (t1, stepwiseToLinear(t2))
|
||||
| (`Stepwise, `Linear) => (stepwiseToLinear(t1), t2)
|
||||
};
|
||||
|
||||
let extrapolation =
|
||||
switch (distributionType) {
|
||||
| `PDF => `UseZero
|
||||
| `CDF => `UseOutermostPoints
|
||||
};
|
||||
|
||||
let interpolator =
|
||||
XYShape.XtoY.continuousInterpolator(t1.interpolation, extrapolation);
|
||||
|
||||
make(
|
||||
~integralSumCache=combinedIntegralSum,
|
||||
XYShape.PointwiseCombination.combine(
|
||||
fn,
|
||||
interpolator,
|
||||
t1.xyShape,
|
||||
t2.xyShape,
|
||||
),
|
||||
);
|
||||
};
|
||||
|
||||
let toLinear = (t: t): option(t) => {
|
||||
switch (t) {
|
||||
| {interpolation: `Stepwise, xyShape, integralSumCache, integralCache} =>
|
||||
xyShape
|
||||
|> XYShape.Range.stepsToContinuous
|
||||
|> E.O.fmap(make(~integralSumCache, ~integralCache))
|
||||
| {interpolation: `Linear} => Some(t)
|
||||
};
|
||||
};
|
||||
let shapeFn = (fn, t: t) => t |> getShape |> fn;
|
||||
|
||||
let updateIntegralSumCache = (integralSumCache, t: t): t => {
|
||||
...t,
|
||||
integralSumCache,
|
||||
};
|
||||
|
||||
let updateIntegralCache = (integralCache, t: t): t => {...t, integralCache};
|
||||
|
||||
let reduce =
|
||||
(
|
||||
~integralSumCachesFn: (float, float) => option(float)=(_, _) => None,
|
||||
~integralCachesFn: (t, t) => option(t)=(_, _) => None,
|
||||
fn,
|
||||
continuousShapes,
|
||||
) =>
|
||||
continuousShapes
|
||||
|> E.A.fold_left(
|
||||
combinePointwise(~integralSumCachesFn, ~integralCachesFn, fn),
|
||||
empty,
|
||||
);
|
||||
|
||||
let mapY =
|
||||
(~integralSumCacheFn=_ => None, ~integralCacheFn=_ => None, ~fn, t: t) => {
|
||||
make(
|
||||
~interpolation=t.interpolation,
|
||||
~integralSumCache=t.integralSumCache |> E.O.bind(_, integralSumCacheFn),
|
||||
~integralCache=t.integralCache |> E.O.bind(_, integralCacheFn),
|
||||
t |> getShape |> XYShape.T.mapY(fn),
|
||||
);
|
||||
};
|
||||
|
||||
let rec scaleBy = (~scale=1.0, t: t): t => {
|
||||
let scaledIntegralSumCache =
|
||||
E.O.bind(t.integralSumCache, v => Some(scale *. v));
|
||||
let scaledIntegralCache =
|
||||
E.O.bind(t.integralCache, v => Some(scaleBy(~scale, v)));
|
||||
|
||||
t
|
||||
|> mapY(~fn=(r: float) => r *. scale)
|
||||
|> updateIntegralSumCache(scaledIntegralSumCache)
|
||||
|> updateIntegralCache(scaledIntegralCache);
|
||||
};
|
||||
|
||||
module T =
|
||||
Dist({
|
||||
type t = DistTypes.continuousShape;
|
||||
type integral = DistTypes.continuousShape;
|
||||
let minX = shapeFn(XYShape.T.minX);
|
||||
let maxX = shapeFn(XYShape.T.maxX);
|
||||
let mapY = mapY;
|
||||
let updateIntegralCache = updateIntegralCache;
|
||||
let toDiscreteProbabilityMassFraction = _ => 0.0;
|
||||
let toShape = (t: t): DistTypes.shape => Continuous(t);
|
||||
let xToY = (f, {interpolation, xyShape}: t) => {
|
||||
(
|
||||
switch (interpolation) {
|
||||
| `Stepwise =>
|
||||
xyShape |> XYShape.XtoY.stepwiseIncremental(f) |> E.O.default(0.0)
|
||||
| `Linear => xyShape |> XYShape.XtoY.linear(f)
|
||||
}
|
||||
)
|
||||
|> DistTypes.MixedPoint.makeContinuous;
|
||||
};
|
||||
|
||||
let truncate =
|
||||
(leftCutoff: option(float), rightCutoff: option(float), t: t) => {
|
||||
let lc = E.O.default(neg_infinity, leftCutoff);
|
||||
let rc = E.O.default(infinity, rightCutoff);
|
||||
let truncatedZippedPairs =
|
||||
t
|
||||
|> getShape
|
||||
|> XYShape.T.zip
|
||||
|> XYShape.Zipped.filterByX(x => x >= lc && x <= rc);
|
||||
|
||||
let leftNewPoint =
|
||||
leftCutoff
|
||||
|> E.O.dimap(lc => [|(lc -. epsilon_float, 0.)|], _ => [||]);
|
||||
let rightNewPoint =
|
||||
rightCutoff
|
||||
|> E.O.dimap(rc => [|(rc +. epsilon_float, 0.)|], _ => [||]);
|
||||
|
||||
let truncatedZippedPairsWithNewPoints =
|
||||
E.A.concatMany([|leftNewPoint, truncatedZippedPairs, rightNewPoint|]);
|
||||
let truncatedShape =
|
||||
XYShape.T.fromZippedArray(truncatedZippedPairsWithNewPoints);
|
||||
|
||||
make(truncatedShape);
|
||||
};
|
||||
|
||||
// TODO: This should work with stepwise plots.
|
||||
let integral = t =>
|
||||
switch (getShape(t) |> XYShape.T.isEmpty, t.integralCache) {
|
||||
| (true, _) => emptyIntegral
|
||||
| (false, Some(cache)) => cache
|
||||
| (false, None) =>
|
||||
t
|
||||
|> getShape
|
||||
|> XYShape.Range.integrateWithTriangles
|
||||
|> E.O.toExt("This should not have happened")
|
||||
|> make
|
||||
};
|
||||
|
||||
let downsample = (length, t): t =>
|
||||
t
|
||||
|> shapeMap(
|
||||
XYShape.XsConversion.proportionByProbabilityMass(
|
||||
length,
|
||||
integral(t).xyShape,
|
||||
),
|
||||
);
|
||||
let integralEndY = (t: t) =>
|
||||
t.integralSumCache |> E.O.default(t |> integral |> lastY);
|
||||
let integralXtoY = (f, t: t) =>
|
||||
t |> integral |> shapeFn(XYShape.XtoY.linear(f));
|
||||
let integralYtoX = (f, t: t) =>
|
||||
t |> integral |> shapeFn(XYShape.YtoX.linear(f));
|
||||
let toContinuous = t => Some(t);
|
||||
let toDiscrete = _ => None;
|
||||
|
||||
let normalize = (t: t): t => {
|
||||
t
|
||||
|> updateIntegralCache(Some(integral(t)))
|
||||
|> scaleBy(~scale=1. /. integralEndY(t))
|
||||
|> updateIntegralSumCache(Some(1.0));
|
||||
};
|
||||
|
||||
let mean = (t: t) => {
|
||||
let indefiniteIntegralStepwise = (p, h1) => h1 *. p ** 2.0 /. 2.0;
|
||||
let indefiniteIntegralLinear = (p, a, b) =>
|
||||
a *. p ** 2.0 /. 2.0 +. b *. p ** 3.0 /. 3.0;
|
||||
|
||||
XYShape.Analysis.integrateContinuousShape(
|
||||
~indefiniteIntegralStepwise,
|
||||
~indefiniteIntegralLinear,
|
||||
t,
|
||||
);
|
||||
};
|
||||
let variance = (t: t): float =>
|
||||
XYShape.Analysis.getVarianceDangerously(
|
||||
t,
|
||||
mean,
|
||||
XYShape.Analysis.getMeanOfSquaresContinuousShape,
|
||||
);
|
||||
});
|
||||
|
||||
/* This simply creates multiple copies of the continuous distribution, scaled and shifted according to
|
||||
each discrete data point, and then adds them all together. */
|
||||
let combineAlgebraicallyWithDiscrete =
|
||||
(
|
||||
op: ExpressionTypes.algebraicOperation,
|
||||
t1: t,
|
||||
t2: DistTypes.discreteShape,
|
||||
) => {
|
||||
let t1s = t1 |> getShape;
|
||||
let t2s = t2.xyShape; // TODO would like to use Discrete.getShape here, but current file structure doesn't allow for that
|
||||
|
||||
if (XYShape.T.isEmpty(t1s) || XYShape.T.isEmpty(t2s)) {
|
||||
empty;
|
||||
} else {
|
||||
let continuousAsLinear =
|
||||
switch (t1.interpolation) {
|
||||
| `Linear => t1
|
||||
| `Stepwise => stepwiseToLinear(t1)
|
||||
};
|
||||
|
||||
let combinedShape =
|
||||
AlgebraicShapeCombination.combineShapesContinuousDiscrete(
|
||||
op,
|
||||
continuousAsLinear |> getShape,
|
||||
t2s,
|
||||
);
|
||||
|
||||
let combinedIntegralSum =
|
||||
switch (op) {
|
||||
| `Multiply
|
||||
| `Divide =>
|
||||
Common.combineIntegralSums(
|
||||
(a, b) => Some(a *. b),
|
||||
t1.integralSumCache,
|
||||
t2.integralSumCache,
|
||||
)
|
||||
| _ => None
|
||||
};
|
||||
|
||||
// TODO: It could make sense to automatically transform the integrals here (shift or scale)
|
||||
make(
|
||||
~interpolation=t1.interpolation,
|
||||
~integralSumCache=combinedIntegralSum,
|
||||
combinedShape,
|
||||
);
|
||||
};
|
||||
};
|
||||
|
||||
let combineAlgebraically =
|
||||
(op: ExpressionTypes.algebraicOperation, t1: t, t2: t) => {
|
||||
let s1 = t1 |> getShape;
|
||||
let s2 = t2 |> getShape;
|
||||
let t1n = s1 |> XYShape.T.length;
|
||||
let t2n = s2 |> XYShape.T.length;
|
||||
if (t1n == 0 || t2n == 0) {
|
||||
empty;
|
||||
} else {
|
||||
let combinedShape =
|
||||
AlgebraicShapeCombination.combineShapesContinuousContinuous(op, s1, s2);
|
||||
let combinedIntegralSum =
|
||||
Common.combineIntegralSums(
|
||||
(a, b) => Some(a *. b),
|
||||
t1.integralSumCache,
|
||||
t2.integralSumCache,
|
||||
);
|
||||
// return a new Continuous distribution
|
||||
make(~integralSumCache=combinedIntegralSum, combinedShape);
|
||||
};
|
||||
};
|
|
@ -1,232 +0,0 @@
|
|||
open Distributions;
|
||||
|
||||
type t = DistTypes.discreteShape;
|
||||
|
||||
let make = (~integralSumCache=None, ~integralCache=None, xyShape): t => {xyShape, integralSumCache, integralCache};
|
||||
let shapeMap = (fn, {xyShape, integralSumCache, integralCache}: t): t => {
|
||||
xyShape: fn(xyShape),
|
||||
integralSumCache,
|
||||
integralCache
|
||||
};
|
||||
let getShape = (t: t) => t.xyShape;
|
||||
let oShapeMap = (fn, {xyShape, integralSumCache, integralCache}: t): option(t) =>
|
||||
fn(xyShape) |> E.O.fmap(make(~integralSumCache, ~integralCache));
|
||||
|
||||
let emptyIntegral: DistTypes.continuousShape = {
|
||||
xyShape: {xs: [|neg_infinity|], ys: [|0.0|]},
|
||||
interpolation: `Stepwise,
|
||||
integralSumCache: Some(0.0),
|
||||
integralCache: None,
|
||||
};
|
||||
let empty: DistTypes.discreteShape = {
|
||||
xyShape: XYShape.T.empty,
|
||||
integralSumCache: Some(0.0),
|
||||
integralCache: Some(emptyIntegral),
|
||||
};
|
||||
|
||||
|
||||
let shapeFn = (fn, t: t) => t |> getShape |> fn;
|
||||
|
||||
let lastY = (t: t) => t |> getShape |> XYShape.T.lastY;
|
||||
|
||||
let combinePointwise =
|
||||
(
|
||||
~integralSumCachesFn = (_, _) => None,
|
||||
~integralCachesFn: (DistTypes.continuousShape, DistTypes.continuousShape) => option(DistTypes.continuousShape) = (_, _) => None,
|
||||
fn,
|
||||
t1: DistTypes.discreteShape,
|
||||
t2: DistTypes.discreteShape,
|
||||
)
|
||||
: DistTypes.discreteShape => {
|
||||
let combinedIntegralSum =
|
||||
Common.combineIntegralSums(
|
||||
integralSumCachesFn,
|
||||
t1.integralSumCache,
|
||||
t2.integralSumCache,
|
||||
);
|
||||
|
||||
// TODO: does it ever make sense to pointwise combine the integrals here?
|
||||
// It could be done for pointwise additions, but is that ever needed?
|
||||
|
||||
make(
|
||||
~integralSumCache=combinedIntegralSum,
|
||||
XYShape.PointwiseCombination.combine(
|
||||
(+.),
|
||||
XYShape.XtoY.discreteInterpolator,
|
||||
t1.xyShape,
|
||||
t2.xyShape,
|
||||
),
|
||||
);
|
||||
};
|
||||
|
||||
let reduce =
|
||||
(~integralSumCachesFn=(_, _) => None,
|
||||
~integralCachesFn=(_, _) => None,
|
||||
fn, discreteShapes)
|
||||
: DistTypes.discreteShape =>
|
||||
discreteShapes
|
||||
|> E.A.fold_left(combinePointwise(~integralSumCachesFn, ~integralCachesFn, fn), empty);
|
||||
|
||||
let updateIntegralSumCache = (integralSumCache, t: t): t => {
|
||||
...t,
|
||||
integralSumCache,
|
||||
};
|
||||
|
||||
let updateIntegralCache = (integralCache, t: t): t => {
|
||||
...t,
|
||||
integralCache,
|
||||
};
|
||||
|
||||
/* This multiples all of the data points together and creates a new discrete distribution from the results.
|
||||
Data points at the same xs get added together. It may be a good idea to downsample t1 and t2 before and/or the result after. */
|
||||
let combineAlgebraically =
|
||||
(op: ExpressionTypes.algebraicOperation, t1: t, t2: t): t => {
|
||||
let t1s = t1 |> getShape;
|
||||
let t2s = t2 |> getShape;
|
||||
let t1n = t1s |> XYShape.T.length;
|
||||
let t2n = t2s |> XYShape.T.length;
|
||||
|
||||
let combinedIntegralSum =
|
||||
Common.combineIntegralSums(
|
||||
(s1, s2) => Some(s1 *. s2),
|
||||
t1.integralSumCache,
|
||||
t2.integralSumCache,
|
||||
);
|
||||
|
||||
let fn = Operation.Algebraic.toFn(op);
|
||||
let xToYMap = E.FloatFloatMap.empty();
|
||||
|
||||
for (i in 0 to t1n - 1) {
|
||||
for (j in 0 to t2n - 1) {
|
||||
let x = fn(t1s.xs[i], t2s.xs[j]);
|
||||
let cv = xToYMap |> E.FloatFloatMap.get(x) |> E.O.default(0.);
|
||||
let my = t1s.ys[i] *. t2s.ys[j];
|
||||
let _ = Belt.MutableMap.set(xToYMap, x, cv +. my);
|
||||
();
|
||||
};
|
||||
};
|
||||
|
||||
let rxys = xToYMap |> E.FloatFloatMap.toArray |> XYShape.Zipped.sortByX;
|
||||
|
||||
let combinedShape = XYShape.T.fromZippedArray(rxys);
|
||||
|
||||
make(~integralSumCache=combinedIntegralSum, combinedShape);
|
||||
};
|
||||
|
||||
let mapY = (~integralSumCacheFn=_ => None,
|
||||
~integralCacheFn=_ => None,
|
||||
~fn, t: t) => {
|
||||
make(
|
||||
~integralSumCache=t.integralSumCache |> E.O.bind(_, integralSumCacheFn),
|
||||
~integralCache=t.integralCache |> E.O.bind(_, integralCacheFn),
|
||||
t |> getShape |> XYShape.T.mapY(fn),
|
||||
);
|
||||
};
|
||||
|
||||
|
||||
let scaleBy = (~scale=1.0, t: t): t => {
|
||||
let scaledIntegralSumCache = t.integralSumCache |> E.O.fmap((*.)(scale));
|
||||
let scaledIntegralCache = t.integralCache |> E.O.fmap(Continuous.scaleBy(~scale));
|
||||
|
||||
t
|
||||
|> mapY(~fn=(r: float) => r *. scale)
|
||||
|> updateIntegralSumCache(scaledIntegralSumCache)
|
||||
|> updateIntegralCache(scaledIntegralCache)
|
||||
};
|
||||
|
||||
module T =
|
||||
Dist({
|
||||
type t = DistTypes.discreteShape;
|
||||
type integral = DistTypes.continuousShape;
|
||||
let integral = (t) =>
|
||||
switch (getShape(t) |> XYShape.T.isEmpty, t.integralCache) {
|
||||
| (true, _) => emptyIntegral
|
||||
| (false, Some(c)) => c
|
||||
| (false, None) => {
|
||||
let ts = getShape(t);
|
||||
// The first xy of this integral should always be the zero, to ensure nice plotting
|
||||
let firstX = ts |> XYShape.T.minX;
|
||||
let prependedZeroPoint: XYShape.T.t = {xs: [|firstX -. epsilon_float|], ys: [|0.|]};
|
||||
let integralShape =
|
||||
ts
|
||||
|> XYShape.T.concat(prependedZeroPoint)
|
||||
|> XYShape.T.accumulateYs((+.));
|
||||
|
||||
Continuous.make(~interpolation=`Stepwise, integralShape);
|
||||
}
|
||||
};
|
||||
|
||||
let integralEndY = (t: t) =>
|
||||
t.integralSumCache
|
||||
|> E.O.default(t |> integral |> Continuous.lastY);
|
||||
let minX = shapeFn(XYShape.T.minX);
|
||||
let maxX = shapeFn(XYShape.T.maxX);
|
||||
let toDiscreteProbabilityMassFraction = _ => 1.0;
|
||||
let mapY = mapY;
|
||||
let updateIntegralCache = updateIntegralCache;
|
||||
let toShape = (t: t): DistTypes.shape => Discrete(t);
|
||||
let toContinuous = _ => None;
|
||||
let toDiscrete = t => Some(t);
|
||||
|
||||
let normalize = (t: t): t => {
|
||||
t
|
||||
|> scaleBy(~scale=1. /. integralEndY(t))
|
||||
|> updateIntegralSumCache(Some(1.0));
|
||||
};
|
||||
|
||||
let downsample = (i, t: t): t => {
|
||||
// It's not clear how to downsample a set of discrete points in a meaningful way.
|
||||
// The best we can do is to clip off the smallest values.
|
||||
let currentLength = t |> getShape |> XYShape.T.length;
|
||||
|
||||
if (i < currentLength && i >= 1 && currentLength > 1) {
|
||||
t
|
||||
|> getShape
|
||||
|> XYShape.T.zip
|
||||
|> XYShape.Zipped.sortByY
|
||||
|> Belt.Array.reverse
|
||||
|> Belt.Array.slice(_, ~offset=0, ~len=i)
|
||||
|> XYShape.Zipped.sortByX
|
||||
|> XYShape.T.fromZippedArray
|
||||
|> make;
|
||||
} else {
|
||||
t;
|
||||
};
|
||||
};
|
||||
|
||||
let truncate =
|
||||
(leftCutoff: option(float), rightCutoff: option(float), t: t): t => {
|
||||
t
|
||||
|> getShape
|
||||
|> XYShape.T.zip
|
||||
|> XYShape.Zipped.filterByX(x =>
|
||||
x >= E.O.default(neg_infinity, leftCutoff)
|
||||
&& x <= E.O.default(infinity, rightCutoff)
|
||||
)
|
||||
|> XYShape.T.fromZippedArray
|
||||
|> make;
|
||||
};
|
||||
|
||||
let xToY = (f, t) =>
|
||||
t
|
||||
|> getShape
|
||||
|> XYShape.XtoY.stepwiseIfAtX(f)
|
||||
|> E.O.default(0.0)
|
||||
|> DistTypes.MixedPoint.makeDiscrete;
|
||||
|
||||
let integralXtoY = (f, t) =>
|
||||
t |> integral |> Continuous.getShape |> XYShape.XtoY.linear(f);
|
||||
|
||||
let integralYtoX = (f, t) =>
|
||||
t |> integral |> Continuous.getShape |> XYShape.YtoX.linear(f);
|
||||
|
||||
let mean = (t: t): float => {
|
||||
let s = getShape(t);
|
||||
E.A.reducei(s.xs, 0.0, (acc, x, i) => acc +. x *. s.ys[i]);
|
||||
};
|
||||
let variance = (t: t): float => {
|
||||
let getMeanOfSquares = t =>
|
||||
t |> shapeMap(XYShape.Analysis.squareXYShape) |> mean;
|
||||
XYShape.Analysis.getVarianceDangerously(t, mean, getMeanOfSquares);
|
||||
};
|
||||
});
|
|
@ -1,129 +0,0 @@
|
|||
open DistTypes;
|
||||
|
||||
type t = DistTypes.distPlus;
|
||||
|
||||
let shapeIntegral = shape => Shape.T.Integral.get(shape);
|
||||
let make =
|
||||
(
|
||||
~shape,
|
||||
~squiggleString,
|
||||
~domain=Complete,
|
||||
~unit=UnspecifiedDistribution,
|
||||
(),
|
||||
)
|
||||
: t => {
|
||||
let integral = shapeIntegral(shape);
|
||||
{shape, domain, integralCache: integral, unit, squiggleString};
|
||||
};
|
||||
|
||||
let update =
|
||||
(
|
||||
~shape=?,
|
||||
~integralCache=?,
|
||||
~domain=?,
|
||||
~unit=?,
|
||||
~squiggleString=?,
|
||||
t: t,
|
||||
) => {
|
||||
shape: E.O.default(t.shape, shape),
|
||||
integralCache: E.O.default(t.integralCache, integralCache),
|
||||
domain: E.O.default(t.domain, domain),
|
||||
unit: E.O.default(t.unit, unit),
|
||||
squiggleString: E.O.default(t.squiggleString, squiggleString),
|
||||
};
|
||||
|
||||
let updateShape = (shape, t) => {
|
||||
let integralCache = shapeIntegral(shape);
|
||||
update(~shape, ~integralCache, t);
|
||||
};
|
||||
|
||||
let domainIncludedProbabilityMass = (t: t) =>
|
||||
Domain.includedProbabilityMass(t.domain);
|
||||
|
||||
let domainIncludedProbabilityMassAdjustment = (t: t, f) =>
|
||||
f *. Domain.includedProbabilityMass(t.domain);
|
||||
|
||||
let toShape = ({shape, _}: t) => shape;
|
||||
|
||||
let shapeFn = (fn, {shape}: t) => fn(shape);
|
||||
|
||||
module T =
|
||||
Distributions.Dist({
|
||||
type t = DistTypes.distPlus;
|
||||
type integral = DistTypes.distPlus;
|
||||
let toShape = toShape;
|
||||
let toContinuous = shapeFn(Shape.T.toContinuous);
|
||||
let toDiscrete = shapeFn(Shape.T.toDiscrete);
|
||||
|
||||
let normalize = (t: t): t => {
|
||||
let normalizedShape = t |> toShape |> Shape.T.normalize;
|
||||
t |> updateShape(normalizedShape);
|
||||
};
|
||||
|
||||
let truncate = (leftCutoff, rightCutoff, t: t): t => {
|
||||
let truncatedShape =
|
||||
t
|
||||
|> toShape
|
||||
|> Shape.T.truncate(leftCutoff, rightCutoff);
|
||||
|
||||
t |> updateShape(truncatedShape);
|
||||
};
|
||||
|
||||
let xToY = (f, t: t) =>
|
||||
t
|
||||
|> toShape
|
||||
|> Shape.T.xToY(f)
|
||||
|> MixedPoint.fmap(domainIncludedProbabilityMassAdjustment(t));
|
||||
|
||||
let minX = shapeFn(Shape.T.minX);
|
||||
let maxX = shapeFn(Shape.T.maxX);
|
||||
let toDiscreteProbabilityMassFraction =
|
||||
shapeFn(Shape.T.toDiscreteProbabilityMassFraction);
|
||||
|
||||
// This bit is kind of awkward, could probably use rethinking.
|
||||
let integral = (t: t) =>
|
||||
updateShape(Continuous(t.integralCache), t);
|
||||
|
||||
let updateIntegralCache = (integralCache: option(DistTypes.continuousShape), t) =>
|
||||
update(~integralCache=E.O.default(t.integralCache, integralCache), t);
|
||||
|
||||
let downsample = (i, t): t =>
|
||||
updateShape(t |> toShape |> Shape.T.downsample(i), t);
|
||||
// todo: adjust for limit, maybe?
|
||||
let mapY =
|
||||
(
|
||||
~integralSumCacheFn=previousIntegralSum => None,
|
||||
~integralCacheFn=previousIntegralCache => None,
|
||||
~fn,
|
||||
{shape, _} as t: t,
|
||||
)
|
||||
: t =>
|
||||
Shape.T.mapY(~integralSumCacheFn, ~fn, shape)
|
||||
|> updateShape(_, t);
|
||||
|
||||
// get the total of everything
|
||||
let integralEndY = (t: t) => {
|
||||
Shape.T.Integral.sum(
|
||||
toShape(t),
|
||||
);
|
||||
};
|
||||
|
||||
// TODO: Fix this below, obviously. Adjust for limits
|
||||
let integralXtoY = (f, t: t) => {
|
||||
Shape.T.Integral.xToY(
|
||||
f,
|
||||
toShape(t),
|
||||
)
|
||||
|> domainIncludedProbabilityMassAdjustment(t);
|
||||
};
|
||||
|
||||
// TODO: This part is broken when there is a limit, if this is supposed to be taken into account.
|
||||
let integralYtoX = (f, t: t) => {
|
||||
Shape.T.Integral.yToX(f, toShape(t));
|
||||
};
|
||||
|
||||
let mean = (t: t) => {
|
||||
Shape.T.mean(t.shape);
|
||||
};
|
||||
let variance = (t: t) => Shape.T.variance(t.shape);
|
||||
});
|
|
@ -1,28 +0,0 @@
|
|||
open DistTypes;
|
||||
|
||||
type t = DistTypes.distPlus;
|
||||
|
||||
let unitToJson = ({unit}: t) => unit |> DistTypes.DistributionUnit.toJson;
|
||||
|
||||
let timeVector = ({unit}: t) =>
|
||||
switch (unit) {
|
||||
| TimeDistribution(timeVector) => Some(timeVector)
|
||||
| UnspecifiedDistribution => None
|
||||
};
|
||||
|
||||
let timeInVectorToX = (f: TimeTypes.timeInVector, t: t) => {
|
||||
let timeVector = t |> timeVector;
|
||||
timeVector |> E.O.fmap(TimeTypes.RelativeTimePoint.toXValue(_, f));
|
||||
};
|
||||
|
||||
let xToY = (f: TimeTypes.timeInVector, t: t) => {
|
||||
timeInVectorToX(f, t) |> E.O.fmap(DistPlus.T.xToY(_, t));
|
||||
};
|
||||
|
||||
module Integral = {
|
||||
include DistPlus.T.Integral;
|
||||
let xToY = (f: TimeTypes.timeInVector, t: t) => {
|
||||
timeInVectorToX(f, t)
|
||||
|> E.O.fmap(x => DistPlus.T.Integral.xToY(x, t));
|
||||
};
|
||||
};
|
|
@ -1,179 +0,0 @@
|
|||
type domainLimit = {
|
||||
xPoint: float,
|
||||
excludingProbabilityMass: float,
|
||||
};
|
||||
|
||||
type domain =
|
||||
| Complete
|
||||
| LeftLimited(domainLimit)
|
||||
| RightLimited(domainLimit)
|
||||
| LeftAndRightLimited(domainLimit, domainLimit);
|
||||
|
||||
type distributionType = [
|
||||
| `PDF
|
||||
| `CDF
|
||||
];
|
||||
|
||||
type xyShape = {
|
||||
xs: array(float),
|
||||
ys: array(float),
|
||||
};
|
||||
|
||||
type interpolationStrategy = [
|
||||
| `Stepwise
|
||||
| `Linear
|
||||
];
|
||||
type extrapolationStrategy = [
|
||||
| `UseZero
|
||||
| `UseOutermostPoints
|
||||
];
|
||||
|
||||
type interpolator = (xyShape, int, float) => float;
|
||||
|
||||
type continuousShape = {
|
||||
xyShape,
|
||||
interpolation: interpolationStrategy,
|
||||
integralSumCache: option(float),
|
||||
integralCache: option(continuousShape),
|
||||
};
|
||||
|
||||
type discreteShape = {
|
||||
xyShape,
|
||||
integralSumCache: option(float),
|
||||
integralCache: option(continuousShape),
|
||||
};
|
||||
|
||||
type mixedShape = {
|
||||
continuous: continuousShape,
|
||||
discrete: discreteShape,
|
||||
integralSumCache: option(float),
|
||||
integralCache: option(continuousShape),
|
||||
};
|
||||
|
||||
type shapeMonad('a, 'b, 'c) =
|
||||
| Mixed('a)
|
||||
| Discrete('b)
|
||||
| Continuous('c);
|
||||
|
||||
type shape = shapeMonad(mixedShape, discreteShape, continuousShape);
|
||||
|
||||
module ShapeMonad = {
|
||||
let fmap =
|
||||
(t: shapeMonad('a, 'b, 'c), (fn1, fn2, fn3)): shapeMonad('d, 'e, 'f) =>
|
||||
switch (t) {
|
||||
| Mixed(m) => Mixed(fn1(m))
|
||||
| Discrete(m) => Discrete(fn2(m))
|
||||
| Continuous(m) => Continuous(fn3(m))
|
||||
};
|
||||
};
|
||||
|
||||
type generationSource =
|
||||
| SquiggleString(string)
|
||||
| Shape(shape);
|
||||
|
||||
type distributionUnit =
|
||||
| UnspecifiedDistribution
|
||||
| TimeDistribution(TimeTypes.timeVector);
|
||||
|
||||
type distPlus = {
|
||||
shape,
|
||||
domain,
|
||||
integralCache: continuousShape,
|
||||
unit: distributionUnit,
|
||||
squiggleString: option(string),
|
||||
};
|
||||
|
||||
module DistributionUnit = {
|
||||
let toJson = (distributionUnit: distributionUnit) =>
|
||||
switch (distributionUnit) {
|
||||
| TimeDistribution({zero, unit}) =>
|
||||
Js.Null.fromOption(
|
||||
Some({"zero": zero, "unit": unit |> TimeTypes.TimeUnit.toString}),
|
||||
)
|
||||
| _ => Js.Null.fromOption(None)
|
||||
};
|
||||
};
|
||||
|
||||
module Domain = {
|
||||
let excludedProbabilityMass = (t: domain) => {
|
||||
switch (t) {
|
||||
| Complete => 0.0
|
||||
| LeftLimited({excludingProbabilityMass}) => excludingProbabilityMass
|
||||
| RightLimited({excludingProbabilityMass}) => excludingProbabilityMass
|
||||
| LeftAndRightLimited(
|
||||
{excludingProbabilityMass: l},
|
||||
{excludingProbabilityMass: r},
|
||||
) =>
|
||||
l +. r
|
||||
};
|
||||
};
|
||||
|
||||
let includedProbabilityMass = (t: domain) =>
|
||||
1.0 -. excludedProbabilityMass(t);
|
||||
|
||||
let initialProbabilityMass = (t: domain) => {
|
||||
switch (t) {
|
||||
| Complete
|
||||
| RightLimited(_) => 0.0
|
||||
| LeftLimited({excludingProbabilityMass}) => excludingProbabilityMass
|
||||
| LeftAndRightLimited({excludingProbabilityMass}, _) => excludingProbabilityMass
|
||||
};
|
||||
};
|
||||
|
||||
let normalizeProbabilityMass = (t: domain) => {
|
||||
1. /. excludedProbabilityMass(t);
|
||||
};
|
||||
|
||||
let yPointToSubYPoint = (t: domain, yPoint) => {
|
||||
switch (t) {
|
||||
| Complete => Some(yPoint)
|
||||
| LeftLimited({excludingProbabilityMass})
|
||||
when yPoint < excludingProbabilityMass =>
|
||||
None
|
||||
| LeftLimited({excludingProbabilityMass})
|
||||
when yPoint >= excludingProbabilityMass =>
|
||||
Some(
|
||||
(yPoint -. excludingProbabilityMass) /. includedProbabilityMass(t),
|
||||
)
|
||||
| RightLimited({excludingProbabilityMass})
|
||||
when yPoint > 1. -. excludingProbabilityMass =>
|
||||
None
|
||||
| RightLimited({excludingProbabilityMass})
|
||||
when yPoint <= 1. -. excludingProbabilityMass =>
|
||||
Some(yPoint /. includedProbabilityMass(t))
|
||||
| LeftAndRightLimited({excludingProbabilityMass: l}, _) when yPoint < l =>
|
||||
None
|
||||
| LeftAndRightLimited(_, {excludingProbabilityMass: r})
|
||||
when yPoint > 1.0 -. r =>
|
||||
None
|
||||
| LeftAndRightLimited({excludingProbabilityMass: l}, _) =>
|
||||
Some((yPoint -. l) /. includedProbabilityMass(t))
|
||||
| _ => None
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
type mixedPoint = {
|
||||
continuous: float,
|
||||
discrete: float,
|
||||
};
|
||||
|
||||
module MixedPoint = {
|
||||
type t = mixedPoint;
|
||||
let toContinuousValue = (t: t) => t.continuous;
|
||||
let toDiscreteValue = (t: t) => t.discrete;
|
||||
let makeContinuous = (continuous: float): t => {continuous, discrete: 0.0};
|
||||
let makeDiscrete = (discrete: float): t => {continuous: 0.0, discrete};
|
||||
|
||||
let fmap = (fn: float => float, t: t) => {
|
||||
continuous: fn(t.continuous),
|
||||
discrete: fn(t.discrete),
|
||||
};
|
||||
|
||||
let combine2 = (fn, c: t, d: t): t => {
|
||||
continuous: fn(c.continuous, d.continuous),
|
||||
discrete: fn(c.discrete, d.discrete),
|
||||
};
|
||||
|
||||
let add = combine2((a, b) => a +. b);
|
||||
};
|
|
@ -1,84 +0,0 @@
|
|||
module type dist = {
|
||||
type t;
|
||||
type integral;
|
||||
let minX: t => float;
|
||||
let maxX: t => float;
|
||||
let mapY:
|
||||
(~integralSumCacheFn: float => option(float)=?, ~integralCacheFn: DistTypes.continuousShape => option(DistTypes.continuousShape)=?, ~fn: float => float, t) => t;
|
||||
let xToY: (float, t) => DistTypes.mixedPoint;
|
||||
let toShape: t => DistTypes.shape;
|
||||
let toContinuous: t => option(DistTypes.continuousShape);
|
||||
let toDiscrete: t => option(DistTypes.discreteShape);
|
||||
let normalize: t => t;
|
||||
let toDiscreteProbabilityMassFraction: t => float;
|
||||
let downsample: (int, t) => t;
|
||||
let truncate: (option(float), option(float), t) => t;
|
||||
|
||||
let updateIntegralCache: (option(DistTypes.continuousShape), t) => t;
|
||||
|
||||
let integral: (t) => integral;
|
||||
let integralEndY: (t) => float;
|
||||
let integralXtoY: (float, t) => float;
|
||||
let integralYtoX: (float, t) => float;
|
||||
|
||||
let mean: t => float;
|
||||
let variance: t => float;
|
||||
};
|
||||
|
||||
module Dist = (T: dist) => {
|
||||
type t = T.t;
|
||||
type integral = T.integral;
|
||||
let minX = T.minX;
|
||||
let maxX = T.maxX;
|
||||
let integral = T.integral;
|
||||
let xTotalRange = (t: t) => maxX(t) -. minX(t);
|
||||
let mapY = T.mapY;
|
||||
let xToY = T.xToY;
|
||||
let downsample = T.downsample;
|
||||
let toShape = T.toShape;
|
||||
let toDiscreteProbabilityMassFraction = T.toDiscreteProbabilityMassFraction;
|
||||
let toContinuous = T.toContinuous;
|
||||
let toDiscrete = T.toDiscrete;
|
||||
let normalize = T.normalize;
|
||||
let truncate = T.truncate;
|
||||
let mean = T.mean;
|
||||
let variance = T.variance;
|
||||
|
||||
let updateIntegralCache = T.updateIntegralCache;
|
||||
|
||||
module Integral = {
|
||||
type t = T.integral;
|
||||
let get = T.integral;
|
||||
let xToY = T.integralXtoY;
|
||||
let yToX = T.integralYtoX;
|
||||
let sum = T.integralEndY;
|
||||
};
|
||||
};
|
||||
|
||||
module Common = {
|
||||
let combineIntegralSums =
|
||||
(
|
||||
combineFn: (float, float) => option(float),
|
||||
t1IntegralSumCache: option(float),
|
||||
t2IntegralSumCache: option(float),
|
||||
) => {
|
||||
switch (t1IntegralSumCache, t2IntegralSumCache) {
|
||||
| (None, _)
|
||||
| (_, None) => None
|
||||
| (Some(s1), Some(s2)) => combineFn(s1, s2)
|
||||
};
|
||||
};
|
||||
|
||||
let combineIntegrals =
|
||||
(
|
||||
combineFn: (DistTypes.continuousShape, DistTypes.continuousShape) => option(DistTypes.continuousShape),
|
||||
t1IntegralCache: option(DistTypes.continuousShape),
|
||||
t2IntegralCache: option(DistTypes.continuousShape),
|
||||
) => {
|
||||
switch (t1IntegralCache, t2IntegralCache) {
|
||||
| (None, _)
|
||||
| (_, None) => None
|
||||
| (Some(s1), Some(s2)) => combineFn(s1, s2)
|
||||
};
|
||||
};
|
||||
};
|
|
@ -1,332 +0,0 @@
|
|||
open Distributions;
|
||||
|
||||
type t = DistTypes.mixedShape;
|
||||
let make = (~integralSumCache=None, ~integralCache=None, ~continuous, ~discrete): t => {continuous, discrete, integralSumCache, integralCache};
|
||||
|
||||
let totalLength = (t: t): int => {
|
||||
let continuousLength =
|
||||
t.continuous |> Continuous.getShape |> XYShape.T.length;
|
||||
let discreteLength = t.discrete |> Discrete.getShape |> XYShape.T.length;
|
||||
|
||||
continuousLength + discreteLength;
|
||||
};
|
||||
|
||||
let scaleBy = (~scale=1.0, t: t): t => {
|
||||
let scaledDiscrete = Discrete.scaleBy(~scale, t.discrete);
|
||||
let scaledContinuous = Continuous.scaleBy(~scale, t.continuous);
|
||||
let scaledIntegralCache = E.O.bind(t.integralCache, v => Some(Continuous.scaleBy(~scale, v)));
|
||||
let scaledIntegralSumCache = E.O.bind(t.integralSumCache, s => Some(s *. scale));
|
||||
make(~discrete=scaledDiscrete, ~continuous=scaledContinuous, ~integralSumCache=scaledIntegralSumCache, ~integralCache=scaledIntegralCache);
|
||||
};
|
||||
|
||||
let toContinuous = ({continuous}: t) => Some(continuous);
|
||||
let toDiscrete = ({discrete}: t) => Some(discrete);
|
||||
|
||||
let updateIntegralCache = (integralCache, t: t): t => {
|
||||
...t,
|
||||
integralCache,
|
||||
};
|
||||
|
||||
module T =
|
||||
Dist({
|
||||
type t = DistTypes.mixedShape;
|
||||
type integral = DistTypes.continuousShape;
|
||||
let minX = ({continuous, discrete}: t) => {
|
||||
min(Continuous.T.minX(continuous), Discrete.T.minX(discrete));
|
||||
};
|
||||
let maxX = ({continuous, discrete}: t) =>
|
||||
max(Continuous.T.maxX(continuous), Discrete.T.maxX(discrete));
|
||||
let toShape = (t: t): DistTypes.shape => Mixed(t);
|
||||
|
||||
let updateIntegralCache = updateIntegralCache;
|
||||
|
||||
let toContinuous = toContinuous;
|
||||
let toDiscrete = toDiscrete;
|
||||
|
||||
let truncate =
|
||||
(
|
||||
leftCutoff: option(float),
|
||||
rightCutoff: option(float),
|
||||
{discrete, continuous}: t,
|
||||
) => {
|
||||
let truncatedContinuous =
|
||||
Continuous.T.truncate(leftCutoff, rightCutoff, continuous);
|
||||
let truncatedDiscrete =
|
||||
Discrete.T.truncate(leftCutoff, rightCutoff, discrete);
|
||||
|
||||
make(~integralSumCache=None, ~integralCache=None, ~discrete=truncatedDiscrete, ~continuous=truncatedContinuous);
|
||||
};
|
||||
|
||||
let normalize = (t: t): t => {
|
||||
let continuousIntegral = Continuous.T.Integral.get(t.continuous);
|
||||
let discreteIntegral = Discrete.T.Integral.get(t.discrete);
|
||||
|
||||
let continuous = t.continuous |> Continuous.updateIntegralCache(Some(continuousIntegral));
|
||||
let discrete = t.discrete |> Discrete.updateIntegralCache(Some(discreteIntegral));
|
||||
|
||||
let continuousIntegralSum =
|
||||
Continuous.T.Integral.sum(continuous);
|
||||
let discreteIntegralSum =
|
||||
Discrete.T.Integral.sum(discrete);
|
||||
let totalIntegralSum = continuousIntegralSum +. discreteIntegralSum;
|
||||
|
||||
let newContinuousSum = continuousIntegralSum /. totalIntegralSum;
|
||||
let newDiscreteSum = discreteIntegralSum /. totalIntegralSum;
|
||||
|
||||
let normalizedContinuous =
|
||||
continuous
|
||||
|> Continuous.scaleBy(~scale=newContinuousSum /. continuousIntegralSum)
|
||||
|> Continuous.updateIntegralSumCache(Some(newContinuousSum));
|
||||
let normalizedDiscrete =
|
||||
discrete
|
||||
|> Discrete.scaleBy(~scale=newDiscreteSum /. discreteIntegralSum)
|
||||
|> Discrete.updateIntegralSumCache(Some(newDiscreteSum));
|
||||
|
||||
make(~integralSumCache=Some(1.0), ~integralCache=None, ~continuous=normalizedContinuous, ~discrete=normalizedDiscrete);
|
||||
};
|
||||
|
||||
let xToY = (x, t: t) => {
|
||||
// This evaluates the mixedShape at x, interpolating if necessary.
|
||||
// Note that we normalize entire mixedShape first.
|
||||
let {continuous, discrete}: t = normalize(t);
|
||||
let c = Continuous.T.xToY(x, continuous);
|
||||
let d = Discrete.T.xToY(x, discrete);
|
||||
DistTypes.MixedPoint.add(c, d); // "add" here just combines the two values into a single MixedPoint.
|
||||
};
|
||||
|
||||
let toDiscreteProbabilityMassFraction = ({discrete, continuous}: t) => {
|
||||
let discreteIntegralSum =
|
||||
Discrete.T.Integral.sum(discrete);
|
||||
let continuousIntegralSum =
|
||||
Continuous.T.Integral.sum(continuous);
|
||||
let totalIntegralSum = discreteIntegralSum +. continuousIntegralSum;
|
||||
|
||||
discreteIntegralSum /. totalIntegralSum;
|
||||
};
|
||||
|
||||
let downsample = (count, t: t): t => {
|
||||
// We will need to distribute the new xs fairly between the discrete and continuous shapes.
|
||||
// The easiest way to do this is to simply go by the previous probability masses.
|
||||
|
||||
let discreteIntegralSum =
|
||||
Discrete.T.Integral.sum(t.discrete);
|
||||
let continuousIntegralSum =
|
||||
Continuous.T.Integral.sum(t.continuous);
|
||||
let totalIntegralSum = discreteIntegralSum +. continuousIntegralSum;
|
||||
|
||||
// TODO: figure out what to do when the totalIntegralSum is zero.
|
||||
|
||||
let downsampledDiscrete =
|
||||
Discrete.T.downsample(
|
||||
int_of_float(
|
||||
float_of_int(count) *. (discreteIntegralSum /. totalIntegralSum),
|
||||
),
|
||||
t.discrete,
|
||||
);
|
||||
|
||||
let downsampledContinuous =
|
||||
Continuous.T.downsample(
|
||||
int_of_float(
|
||||
float_of_int(count) *. (continuousIntegralSum /. totalIntegralSum),
|
||||
),
|
||||
t.continuous,
|
||||
);
|
||||
|
||||
{...t, discrete: downsampledDiscrete, continuous: downsampledContinuous};
|
||||
};
|
||||
|
||||
let integral = (t: t) => {
|
||||
switch (t.integralCache) {
|
||||
| Some(cache) => cache
|
||||
| None =>
|
||||
// note: if the underlying shapes aren't normalized, then these integrals won't be either -- but that's the way it should be.
|
||||
let continuousIntegral = Continuous.T.Integral.get(t.continuous);
|
||||
let discreteIntegral = Continuous.stepwiseToLinear(Discrete.T.Integral.get(t.discrete));
|
||||
|
||||
Continuous.make(
|
||||
XYShape.PointwiseCombination.combine(
|
||||
(+.),
|
||||
XYShape.XtoY.continuousInterpolator(`Linear, `UseOutermostPoints),
|
||||
Continuous.getShape(continuousIntegral),
|
||||
Continuous.getShape(discreteIntegral),
|
||||
),
|
||||
);
|
||||
};
|
||||
};
|
||||
|
||||
let integralEndY = (t: t) => {
|
||||
t |> integral |> Continuous.lastY;
|
||||
};
|
||||
|
||||
let integralXtoY = (f, t) => {
|
||||
t |> integral |> Continuous.getShape |> XYShape.XtoY.linear(f);
|
||||
};
|
||||
|
||||
let integralYtoX = (f, t) => {
|
||||
t |> integral |> Continuous.getShape |> XYShape.YtoX.linear(f);
|
||||
};
|
||||
|
||||
// This pipes all ys (continuous and discrete) through fn.
|
||||
// If mapY is a linear operation, we might be able to update the integralSumCaches as well;
|
||||
// if not, they'll be set to None.
|
||||
let mapY =
|
||||
(
|
||||
~integralSumCacheFn=previousIntegralSum => None,
|
||||
~integralCacheFn=previousIntegral => None,
|
||||
~fn,
|
||||
t: t,
|
||||
)
|
||||
: t => {
|
||||
let yMappedDiscrete: DistTypes.discreteShape =
|
||||
t.discrete
|
||||
|> Discrete.T.mapY(~fn)
|
||||
|> Discrete.updateIntegralSumCache(E.O.bind(t.discrete.integralSumCache, integralSumCacheFn))
|
||||
|> Discrete.updateIntegralCache(E.O.bind(t.discrete.integralCache, integralCacheFn));
|
||||
|
||||
let yMappedContinuous: DistTypes.continuousShape =
|
||||
t.continuous
|
||||
|> Continuous.T.mapY(~fn)
|
||||
|> Continuous.updateIntegralSumCache(E.O.bind(t.continuous.integralSumCache, integralSumCacheFn))
|
||||
|> Continuous.updateIntegralCache(E.O.bind(t.continuous.integralCache, integralCacheFn));
|
||||
|
||||
{
|
||||
discrete: yMappedDiscrete,
|
||||
continuous: yMappedContinuous,
|
||||
integralSumCache: E.O.bind(t.integralSumCache, integralSumCacheFn),
|
||||
integralCache: E.O.bind(t.integralCache, integralCacheFn),
|
||||
};
|
||||
};
|
||||
|
||||
let mean = ({discrete, continuous}: t): float => {
|
||||
let discreteMean = Discrete.T.mean(discrete);
|
||||
let continuousMean = Continuous.T.mean(continuous);
|
||||
|
||||
// the combined mean is the weighted sum of the two:
|
||||
let discreteIntegralSum = Discrete.T.Integral.sum(discrete);
|
||||
let continuousIntegralSum = Continuous.T.Integral.sum(continuous);
|
||||
let totalIntegralSum = discreteIntegralSum +. continuousIntegralSum;
|
||||
|
||||
(
|
||||
discreteMean
|
||||
*. discreteIntegralSum
|
||||
+. continuousMean
|
||||
*. continuousIntegralSum
|
||||
)
|
||||
/. totalIntegralSum;
|
||||
};
|
||||
|
||||
let variance = ({discrete, continuous} as t: t): float => {
|
||||
// the combined mean is the weighted sum of the two:
|
||||
let discreteIntegralSum = Discrete.T.Integral.sum(discrete);
|
||||
let continuousIntegralSum = Continuous.T.Integral.sum(continuous);
|
||||
let totalIntegralSum = discreteIntegralSum +. continuousIntegralSum;
|
||||
|
||||
let getMeanOfSquares = ({discrete, continuous}: t) => {
|
||||
let discreteMean =
|
||||
discrete
|
||||
|> Discrete.shapeMap(XYShape.Analysis.squareXYShape)
|
||||
|> Discrete.T.mean;
|
||||
let continuousMean =
|
||||
continuous |> XYShape.Analysis.getMeanOfSquaresContinuousShape;
|
||||
(
|
||||
discreteMean
|
||||
*. discreteIntegralSum
|
||||
+. continuousMean
|
||||
*. continuousIntegralSum
|
||||
)
|
||||
/. totalIntegralSum;
|
||||
};
|
||||
|
||||
switch (discreteIntegralSum /. totalIntegralSum) {
|
||||
| 1.0 => Discrete.T.variance(discrete)
|
||||
| 0.0 => Continuous.T.variance(continuous)
|
||||
| _ =>
|
||||
XYShape.Analysis.getVarianceDangerously(t, mean, getMeanOfSquares)
|
||||
};
|
||||
};
|
||||
});
|
||||
|
||||
let combineAlgebraically =
|
||||
(op: ExpressionTypes.algebraicOperation, t1: t, t2: t)
|
||||
: t => {
|
||||
// Discrete convolution can cause a huge increase in the number of samples,
|
||||
// so we'll first downsample.
|
||||
|
||||
// An alternative (to be explored in the future) may be to first perform the full convolution and then to downsample the result;
|
||||
// to use non-uniform fast Fourier transforms (for addition only), add web workers or gpu.js, etc. ...
|
||||
|
||||
// we have to figure out where to downsample, and how to effectively
|
||||
//let downsampleIfTooLarge = (t: t) => {
|
||||
// let sqtl = sqrt(float_of_int(totalLength(t)));
|
||||
// sqtl > 10 ? T.downsample(int_of_float(sqtl), t) : t;
|
||||
//};
|
||||
|
||||
let t1d = t1;
|
||||
let t2d = t2;
|
||||
|
||||
// continuous (*) continuous => continuous, but also
|
||||
// discrete (*) continuous => continuous (and vice versa). We have to take care of all combos and then combine them:
|
||||
let ccConvResult =
|
||||
Continuous.combineAlgebraically(
|
||||
op,
|
||||
t1.continuous,
|
||||
t2.continuous,
|
||||
);
|
||||
let dcConvResult =
|
||||
Continuous.combineAlgebraicallyWithDiscrete(
|
||||
op,
|
||||
t2.continuous,
|
||||
t1.discrete,
|
||||
);
|
||||
let cdConvResult =
|
||||
Continuous.combineAlgebraicallyWithDiscrete(
|
||||
op,
|
||||
t1.continuous,
|
||||
t2.discrete,
|
||||
);
|
||||
let continuousConvResult =
|
||||
Continuous.reduce((+.), [|ccConvResult, dcConvResult, cdConvResult|]);
|
||||
|
||||
// ... finally, discrete (*) discrete => discrete, obviously:
|
||||
let discreteConvResult =
|
||||
Discrete.combineAlgebraically(op, t1.discrete, t2.discrete);
|
||||
|
||||
let combinedIntegralSum =
|
||||
Common.combineIntegralSums(
|
||||
(a, b) => Some(a *. b),
|
||||
t1.integralSumCache,
|
||||
t2.integralSumCache,
|
||||
);
|
||||
|
||||
{discrete: discreteConvResult, continuous: continuousConvResult, integralSumCache: combinedIntegralSum, integralCache: None};
|
||||
};
|
||||
|
||||
let combinePointwise = (~integralSumCachesFn = (_, _) => None, ~integralCachesFn = (_, _) => None, fn, t1: t, t2: t): t => {
|
||||
let reducedDiscrete =
|
||||
[|t1, t2|]
|
||||
|> E.A.fmap(toDiscrete)
|
||||
|> E.A.O.concatSomes
|
||||
|> Discrete.reduce(~integralSumCachesFn, ~integralCachesFn, fn);
|
||||
|
||||
let reducedContinuous =
|
||||
[|t1, t2|]
|
||||
|> E.A.fmap(toContinuous)
|
||||
|> E.A.O.concatSomes
|
||||
|> Continuous.reduce(~integralSumCachesFn, ~integralCachesFn, fn);
|
||||
|
||||
let combinedIntegralSum =
|
||||
Common.combineIntegralSums(
|
||||
integralSumCachesFn,
|
||||
t1.integralSumCache,
|
||||
t2.integralSumCache,
|
||||
);
|
||||
|
||||
let combinedIntegral =
|
||||
Common.combineIntegrals(
|
||||
integralCachesFn,
|
||||
t1.integralCache,
|
||||
t2.integralCache,
|
||||
);
|
||||
|
||||
make(~integralSumCache=combinedIntegralSum, ~integralCache=combinedIntegral, ~discrete=reducedDiscrete, ~continuous=reducedContinuous);
|
||||
};
|
|
@ -1,34 +0,0 @@
|
|||
type assumption =
|
||||
| ADDS_TO_1
|
||||
| ADDS_TO_CORRECT_PROBABILITY;
|
||||
|
||||
type assumptions = {
|
||||
continuous: assumption,
|
||||
discrete: assumption,
|
||||
discreteProbabilityMass: option(float),
|
||||
};
|
||||
|
||||
let buildSimple = (~continuous: option(DistTypes.continuousShape), ~discrete: option(DistTypes.discreteShape)): option(DistTypes.shape) => {
|
||||
let continuous = continuous |> E.O.default(Continuous.make(~integralSumCache=Some(0.0), {xs: [||], ys: [||]}));
|
||||
let discrete = discrete |> E.O.default(Discrete.make(~integralSumCache=Some(0.0), {xs: [||], ys: [||]}));
|
||||
let cLength =
|
||||
continuous
|
||||
|> Continuous.getShape
|
||||
|> XYShape.T.xs
|
||||
|> E.A.length;
|
||||
let dLength = discrete |> Discrete.getShape |> XYShape.T.xs |> E.A.length;
|
||||
switch (cLength, dLength) {
|
||||
| (0 | 1, 0) => None
|
||||
| (0 | 1, _) => Some(Discrete(discrete))
|
||||
| (_, 0) => Some(Continuous(continuous))
|
||||
| (_, _) =>
|
||||
let mixedDist =
|
||||
Mixed.make(
|
||||
~integralSumCache=None,
|
||||
~integralCache=None,
|
||||
~continuous,
|
||||
~discrete,
|
||||
);
|
||||
Some(Mixed(mixedDist));
|
||||
};
|
||||
};
|
|
@ -1,240 +0,0 @@
|
|||
open Distributions;
|
||||
|
||||
type t = DistTypes.shape;
|
||||
let mapToAll = ((fn1, fn2, fn3), t: t) =>
|
||||
switch (t) {
|
||||
| Mixed(m) => fn1(m)
|
||||
| Discrete(m) => fn2(m)
|
||||
| Continuous(m) => fn3(m)
|
||||
};
|
||||
|
||||
let fmap = ((fn1, fn2, fn3), t: t): t =>
|
||||
switch (t) {
|
||||
| Mixed(m) => Mixed(fn1(m))
|
||||
| Discrete(m) => Discrete(fn2(m))
|
||||
| Continuous(m) => Continuous(fn3(m))
|
||||
};
|
||||
|
||||
|
||||
let toMixed =
|
||||
mapToAll((
|
||||
m => m,
|
||||
d => Mixed.make(~integralSumCache=d.integralSumCache, ~integralCache=d.integralCache, ~discrete=d, ~continuous=Continuous.empty),
|
||||
c => Mixed.make(~integralSumCache=c.integralSumCache, ~integralCache=c.integralCache, ~discrete=Discrete.empty, ~continuous=c),
|
||||
));
|
||||
|
||||
let combineAlgebraically =
|
||||
(op: ExpressionTypes.algebraicOperation, t1: t, t2: t): t => {
|
||||
|
||||
switch (t1, t2) {
|
||||
| (Continuous(m1), Continuous(m2)) =>
|
||||
Continuous.combineAlgebraically(op, m1, m2) |> Continuous.T.toShape;
|
||||
| (Continuous(m1), Discrete(m2))
|
||||
| (Discrete(m2), Continuous(m1)) =>
|
||||
Continuous.combineAlgebraicallyWithDiscrete(op, m1, m2) |> Continuous.T.toShape
|
||||
| (Discrete(m1), Discrete(m2)) =>
|
||||
Discrete.combineAlgebraically(op, m1, m2) |> Discrete.T.toShape
|
||||
| (m1, m2) =>
|
||||
Mixed.combineAlgebraically(
|
||||
op,
|
||||
toMixed(m1),
|
||||
toMixed(m2),
|
||||
)
|
||||
|> Mixed.T.toShape
|
||||
};
|
||||
};
|
||||
|
||||
let combinePointwise =
|
||||
(~integralSumCachesFn: (float, float) => option(float) = (_, _) => None,
|
||||
~integralCachesFn: (DistTypes.continuousShape, DistTypes.continuousShape) => option(DistTypes.continuousShape) = (_, _) => None,
|
||||
fn,
|
||||
t1: t,
|
||||
t2: t) =>
|
||||
switch (t1, t2) {
|
||||
| (Continuous(m1), Continuous(m2)) =>
|
||||
DistTypes.Continuous(
|
||||
Continuous.combinePointwise(~integralSumCachesFn, ~integralCachesFn, fn, m1, m2),
|
||||
)
|
||||
| (Discrete(m1), Discrete(m2)) =>
|
||||
DistTypes.Discrete(
|
||||
Discrete.combinePointwise(~integralSumCachesFn, ~integralCachesFn, fn, m1, m2),
|
||||
)
|
||||
| (m1, m2) =>
|
||||
DistTypes.Mixed(
|
||||
Mixed.combinePointwise(
|
||||
~integralSumCachesFn,
|
||||
~integralCachesFn,
|
||||
fn,
|
||||
toMixed(m1),
|
||||
toMixed(m2),
|
||||
),
|
||||
)
|
||||
};
|
||||
|
||||
module T =
|
||||
Dist({
|
||||
type t = DistTypes.shape;
|
||||
type integral = DistTypes.continuousShape;
|
||||
|
||||
let xToY = (f: float) =>
|
||||
mapToAll((
|
||||
Mixed.T.xToY(f),
|
||||
Discrete.T.xToY(f),
|
||||
Continuous.T.xToY(f),
|
||||
));
|
||||
|
||||
let toShape = (t: t) => t;
|
||||
|
||||
let toContinuous = t => None;
|
||||
let toDiscrete = t => None;
|
||||
|
||||
let downsample = (i, t) =>
|
||||
fmap(
|
||||
(
|
||||
Mixed.T.downsample(i),
|
||||
Discrete.T.downsample(i),
|
||||
Continuous.T.downsample(i),
|
||||
),
|
||||
t,
|
||||
);
|
||||
|
||||
let truncate = (leftCutoff, rightCutoff, t): t =>
|
||||
fmap(
|
||||
(
|
||||
Mixed.T.truncate(leftCutoff, rightCutoff),
|
||||
Discrete.T.truncate(leftCutoff, rightCutoff),
|
||||
Continuous.T.truncate(leftCutoff, rightCutoff),
|
||||
),
|
||||
t,
|
||||
);
|
||||
|
||||
let toDiscreteProbabilityMassFraction = t => 0.0;
|
||||
|
||||
let normalize =
|
||||
fmap((
|
||||
Mixed.T.normalize,
|
||||
Discrete.T.normalize,
|
||||
Continuous.T.normalize
|
||||
));
|
||||
|
||||
let updateIntegralCache = (integralCache, t: t): t =>
|
||||
fmap((
|
||||
Mixed.T.updateIntegralCache(integralCache),
|
||||
Discrete.T.updateIntegralCache(integralCache),
|
||||
Continuous.T.updateIntegralCache(integralCache),
|
||||
), t);
|
||||
|
||||
let toContinuous =
|
||||
mapToAll((
|
||||
Mixed.T.toContinuous,
|
||||
Discrete.T.toContinuous,
|
||||
Continuous.T.toContinuous,
|
||||
));
|
||||
let toDiscrete =
|
||||
mapToAll((
|
||||
Mixed.T.toDiscrete,
|
||||
Discrete.T.toDiscrete,
|
||||
Continuous.T.toDiscrete,
|
||||
));
|
||||
|
||||
let toDiscreteProbabilityMassFraction =
|
||||
mapToAll((
|
||||
Mixed.T.toDiscreteProbabilityMassFraction,
|
||||
Discrete.T.toDiscreteProbabilityMassFraction,
|
||||
Continuous.T.toDiscreteProbabilityMassFraction,
|
||||
));
|
||||
|
||||
let minX = mapToAll((Mixed.T.minX, Discrete.T.minX, Continuous.T.minX));
|
||||
let integral =
|
||||
mapToAll((
|
||||
Mixed.T.Integral.get,
|
||||
Discrete.T.Integral.get,
|
||||
Continuous.T.Integral.get,
|
||||
));
|
||||
let integralEndY =
|
||||
mapToAll((
|
||||
Mixed.T.Integral.sum,
|
||||
Discrete.T.Integral.sum,
|
||||
Continuous.T.Integral.sum,
|
||||
));
|
||||
let integralXtoY = (f) => {
|
||||
mapToAll((
|
||||
Mixed.T.Integral.xToY(f),
|
||||
Discrete.T.Integral.xToY(f),
|
||||
Continuous.T.Integral.xToY(f),
|
||||
));
|
||||
};
|
||||
let integralYtoX = (f) => {
|
||||
mapToAll((
|
||||
Mixed.T.Integral.yToX(f),
|
||||
Discrete.T.Integral.yToX(f),
|
||||
Continuous.T.Integral.yToX(f),
|
||||
));
|
||||
};
|
||||
let maxX = mapToAll((Mixed.T.maxX, Discrete.T.maxX, Continuous.T.maxX));
|
||||
let mapY = (~integralSumCacheFn=previousIntegralSum => None, ~integralCacheFn=previousIntegral=>None, ~fn) =>{
|
||||
fmap((
|
||||
Mixed.T.mapY(~integralSumCacheFn, ~integralCacheFn, ~fn),
|
||||
Discrete.T.mapY(~integralSumCacheFn, ~integralCacheFn, ~fn),
|
||||
Continuous.T.mapY(~integralSumCacheFn, ~integralCacheFn, ~fn),
|
||||
));
|
||||
}
|
||||
|
||||
let mean = (t: t): float =>
|
||||
switch (t) {
|
||||
| Mixed(m) => Mixed.T.mean(m)
|
||||
| Discrete(m) => Discrete.T.mean(m)
|
||||
| Continuous(m) => Continuous.T.mean(m)
|
||||
};
|
||||
|
||||
let variance = (t: t): float =>
|
||||
switch (t) {
|
||||
| Mixed(m) => Mixed.T.variance(m)
|
||||
| Discrete(m) => Discrete.T.variance(m)
|
||||
| Continuous(m) => Continuous.T.variance(m)
|
||||
};
|
||||
});
|
||||
|
||||
let pdf = (f: float, t: t) => {
|
||||
let mixedPoint: DistTypes.mixedPoint = T.xToY(f, t);
|
||||
mixedPoint.continuous +. mixedPoint.discrete;
|
||||
};
|
||||
|
||||
let inv = T.Integral.yToX;
|
||||
let cdf = T.Integral.xToY;
|
||||
|
||||
let doN = (n, fn) => {
|
||||
let items = Belt.Array.make(n, 0.0);
|
||||
for (x in 0 to n - 1) {
|
||||
let _ = Belt.Array.set(items, x, fn());
|
||||
();
|
||||
};
|
||||
items;
|
||||
};
|
||||
|
||||
let sample = (t: t): float => {
|
||||
let randomItem = Random.float(1.);
|
||||
let bar = t |> T.Integral.yToX(randomItem);
|
||||
bar;
|
||||
};
|
||||
|
||||
let isFloat = (t:t) => switch(t){
|
||||
| Discrete({xyShape: {xs: [|_|], ys: [|1.0|]}}) => true
|
||||
| _ => false
|
||||
}
|
||||
|
||||
let sampleNRendered = (n, dist) => {
|
||||
let integralCache = T.Integral.get(dist);
|
||||
let distWithUpdatedIntegralCache = T.updateIntegralCache(Some(integralCache), dist);
|
||||
|
||||
doN(n, () => sample(distWithUpdatedIntegralCache));
|
||||
};
|
||||
|
||||
let operate = (distToFloatOp: ExpressionTypes.distToFloatOperation, s): float =>
|
||||
switch (distToFloatOp) {
|
||||
| `Pdf(f) => pdf(f, s)
|
||||
| `Cdf(f) => pdf(f, s)
|
||||
| `Inv(f) => inv(f, s)
|
||||
| `Sample => sample(s)
|
||||
| `Mean => T.mean(s)
|
||||
};
|
|
@ -1,83 +0,0 @@
|
|||
type timeUnit = [
|
||||
| #days
|
||||
| #hours
|
||||
| #milliseconds
|
||||
| #minutes
|
||||
| #months
|
||||
| #quarters
|
||||
| #seconds
|
||||
| #weeks
|
||||
| #years
|
||||
]
|
||||
|
||||
type timeVector = {
|
||||
zero: MomentRe.Moment.t,
|
||||
unit: timeUnit,
|
||||
}
|
||||
|
||||
type timePoint = {
|
||||
timeVector: timeVector,
|
||||
value: float,
|
||||
}
|
||||
|
||||
module TimeUnit = {
|
||||
let toString = (timeUnit: timeUnit) =>
|
||||
switch timeUnit {
|
||||
| #days => "days"
|
||||
| #hours => "hours"
|
||||
| #milliseconds => "milliseconds"
|
||||
| #minutes => "minutes"
|
||||
| #months => "months"
|
||||
| #quarters => "quarters"
|
||||
| #seconds => "seconds"
|
||||
| #weeks => "weeks"
|
||||
| #years => "years"
|
||||
}
|
||||
|
||||
let ofString = (timeUnit: string) =>
|
||||
switch timeUnit {
|
||||
| "days" => #days
|
||||
| "hours" => #hours
|
||||
| "milliseconds" => #milliseconds
|
||||
| "minutes" => #minutes
|
||||
| "months" => #months
|
||||
| "quarters" => #quarters
|
||||
| "seconds" => #seconds
|
||||
| "weeks" => #weeks
|
||||
| "years" => #years
|
||||
| _ => Js.Exn.raiseError("TimeUnit is unknown")
|
||||
}
|
||||
}
|
||||
|
||||
module TimePoint = {
|
||||
let fromTimeVector = (timeVector, value): timePoint => {timeVector: timeVector, value: value}
|
||||
|
||||
let toMoment = (timePoint: timePoint) =>
|
||||
timePoint.timeVector.zero |> MomentRe.Moment.add(
|
||||
~duration=MomentRe.duration(timePoint.value, timePoint.timeVector.unit),
|
||||
)
|
||||
|
||||
let fromMoment = (timeVector: timeVector, moment: MomentRe.Moment.t) =>
|
||||
MomentRe.diff(timeVector.zero, moment, timeVector.unit)
|
||||
}
|
||||
|
||||
type timeInVector =
|
||||
| Time(MomentRe.Moment.t)
|
||||
| XValue(float)
|
||||
|
||||
module RelativeTimePoint = {
|
||||
let toTime = (timeVector: timeVector, timeInVector: timeInVector) =>
|
||||
switch timeInVector {
|
||||
| Time(r) => r
|
||||
| XValue(r) =>
|
||||
timeVector.zero |> MomentRe.Moment.add(~duration=MomentRe.duration(r, timeVector.unit))
|
||||
}
|
||||
|
||||
let _timeToX = (time, timeStart, timeUnit) => MomentRe.diff(time, timeStart, timeUnit)
|
||||
|
||||
let toXValue = (timeVector: timeVector, timeInVector: timeInVector) =>
|
||||
switch timeInVector {
|
||||
| Time(r) => _timeToX(r, timeVector.zero, timeVector.unit)
|
||||
| XValue(r) => r
|
||||
}
|
||||
}
|
|
@ -1,504 +0,0 @@
|
|||
open DistTypes;
|
||||
|
||||
let interpolate =
|
||||
(xMin: float, xMax: float, yMin: float, yMax: float, xIntended: float)
|
||||
: float => {
|
||||
let minProportion = (xMax -. xIntended) /. (xMax -. xMin);
|
||||
let maxProportion = (xIntended -. xMin) /. (xMax -. xMin);
|
||||
yMin *. minProportion +. yMax *. maxProportion;
|
||||
};
|
||||
|
||||
// TODO: Make sure that shapes cannot be empty.
|
||||
let extImp = E.O.toExt("Tried to perform an operation on an empty XYShape.");
|
||||
|
||||
module T = {
|
||||
type t = xyShape;
|
||||
let toXyShape = (t: t): xyShape => t;
|
||||
type ts = array(xyShape);
|
||||
let xs = (t: t) => t.xs;
|
||||
let ys = (t: t) => t.ys;
|
||||
let length = (t: t) => E.A.length(t.xs);
|
||||
let empty = {xs: [||], ys: [||]};
|
||||
let isEmpty = (t: t) => length(t) == 0;
|
||||
let minX = (t: t) => t |> xs |> E.A.Sorted.min |> extImp;
|
||||
let maxX = (t: t) => t |> xs |> E.A.Sorted.max |> extImp;
|
||||
let firstY = (t: t) => t |> ys |> E.A.first |> extImp;
|
||||
let lastY = (t: t) => t |> ys |> E.A.last |> extImp;
|
||||
let xTotalRange = (t: t) => maxX(t) -. minX(t);
|
||||
let mapX = (fn, t: t): t => {xs: E.A.fmap(fn, t.xs), ys: t.ys};
|
||||
let mapY = (fn, t: t): t => {xs: t.xs, ys: E.A.fmap(fn, t.ys)};
|
||||
let zip = ({xs, ys}: t) => Belt.Array.zip(xs, ys);
|
||||
let fromArray = ((xs, ys)): t => {xs, ys};
|
||||
let fromArrays = (xs, ys): t => {xs, ys};
|
||||
let accumulateYs = (fn, p: t) => {
|
||||
fromArray((p.xs, E.A.accumulate(fn, p.ys)));
|
||||
};
|
||||
let concat = (t1: t, t2: t) => {
|
||||
let cxs = Array.concat([t1.xs, t2.xs]);
|
||||
let cys = Array.concat([t1.ys, t2.ys]);
|
||||
{xs: cxs, ys: cys};
|
||||
};
|
||||
let fromZippedArray = (pairs: array((float, float))): t =>
|
||||
pairs |> Belt.Array.unzip |> fromArray;
|
||||
let equallyDividedXs = (t: t, newLength) => {
|
||||
E.A.Floats.range(minX(t), maxX(t), newLength);
|
||||
};
|
||||
let toJs = (t: t) => {
|
||||
{"xs": t.xs, "ys": t.ys};
|
||||
};
|
||||
};
|
||||
|
||||
module Ts = {
|
||||
type t = T.ts;
|
||||
let minX = (t: t) => t |> E.A.fmap(T.minX) |> E.A.min |> extImp;
|
||||
let maxX = (t: t) => t |> E.A.fmap(T.maxX) |> E.A.max |> extImp;
|
||||
let equallyDividedXs = (t: t, newLength) => {
|
||||
E.A.Floats.range(minX(t), maxX(t), newLength);
|
||||
};
|
||||
let allXs = (t: t) => t |> E.A.fmap(T.xs) |> E.A.Sorted.concatMany;
|
||||
};
|
||||
|
||||
module Pairs = {
|
||||
let x = fst;
|
||||
let y = snd;
|
||||
let first = (t: T.t) => (T.minX(t), T.firstY(t));
|
||||
let last = (t: T.t) => (T.maxX(t), T.lastY(t));
|
||||
|
||||
let getBy = (t: T.t, fn) => t |> T.zip |> E.A.getBy(_, fn);
|
||||
|
||||
let firstAtOrBeforeXValue = (xValue, t: T.t) => {
|
||||
let zipped = T.zip(t);
|
||||
let firstIndex =
|
||||
zipped |> Belt.Array.getIndexBy(_, ((x, _)) => x > xValue);
|
||||
let previousIndex =
|
||||
switch (firstIndex) {
|
||||
| None => Some(Array.length(zipped) - 1)
|
||||
| Some(0) => None
|
||||
| Some(n) => Some(n - 1)
|
||||
};
|
||||
previousIndex |> Belt.Option.flatMap(_, Belt.Array.get(zipped));
|
||||
};
|
||||
};
|
||||
|
||||
module YtoX = {
|
||||
let linear = (y: float, t: T.t): float => {
|
||||
let firstHigherIndex =
|
||||
E.A.Sorted.binarySearchFirstElementGreaterIndex(T.ys(t), y);
|
||||
let foundX =
|
||||
switch (firstHigherIndex) {
|
||||
| `overMax => T.maxX(t)
|
||||
| `underMin => T.minX(t)
|
||||
| `firstHigher(firstHigherIndex) =>
|
||||
let lowerOrEqualIndex =
|
||||
firstHigherIndex - 1 < 0 ? 0 : firstHigherIndex - 1;
|
||||
let (_xs, _ys) = (T.xs(t), T.ys(t));
|
||||
let needsInterpolation = _ys[lowerOrEqualIndex] != y;
|
||||
if (needsInterpolation) {
|
||||
interpolate(
|
||||
_ys[lowerOrEqualIndex],
|
||||
_ys[firstHigherIndex],
|
||||
_xs[lowerOrEqualIndex],
|
||||
_xs[firstHigherIndex],
|
||||
y,
|
||||
);
|
||||
} else {
|
||||
_xs[lowerOrEqualIndex];
|
||||
};
|
||||
};
|
||||
foundX;
|
||||
};
|
||||
};
|
||||
|
||||
module XtoY = {
|
||||
let stepwiseIncremental = (f, t: T.t) =>
|
||||
Pairs.firstAtOrBeforeXValue(f, t) |> E.O.fmap(Pairs.y);
|
||||
|
||||
let stepwiseIfAtX = (f: float, t: T.t) => {
|
||||
Pairs.getBy(t, ((x: float, _)) => {x == f}) |> E.O.fmap(Pairs.y);
|
||||
};
|
||||
|
||||
let linear = (x: float, t: T.t): float => {
|
||||
let firstHigherIndex =
|
||||
E.A.Sorted.binarySearchFirstElementGreaterIndex(T.xs(t), x);
|
||||
let n =
|
||||
switch (firstHigherIndex) {
|
||||
| `overMax => T.lastY(t)
|
||||
| `underMin => T.firstY(t)
|
||||
| `firstHigher(firstHigherIndex) =>
|
||||
let lowerOrEqualIndex =
|
||||
firstHigherIndex - 1 < 0 ? 0 : firstHigherIndex - 1;
|
||||
let (_xs, _ys) = (T.xs(t), T.ys(t));
|
||||
let needsInterpolation = _xs[lowerOrEqualIndex] != x;
|
||||
if (needsInterpolation) {
|
||||
interpolate(
|
||||
_xs[lowerOrEqualIndex],
|
||||
_xs[firstHigherIndex],
|
||||
_ys[lowerOrEqualIndex],
|
||||
_ys[firstHigherIndex],
|
||||
x,
|
||||
);
|
||||
} else {
|
||||
_ys[lowerOrEqualIndex];
|
||||
};
|
||||
};
|
||||
n;
|
||||
};
|
||||
|
||||
/* Returns a between-points-interpolating function that can be used with PointwiseCombination.combine.
|
||||
Interpolation can either be stepwise (using the value on the left) or linear. Extrapolation can be `UseZero or `UseOutermostPoints. */
|
||||
let continuousInterpolator = (interpolation: DistTypes.interpolationStrategy, extrapolation: DistTypes.extrapolationStrategy): interpolator => {
|
||||
switch (interpolation, extrapolation) {
|
||||
| (`Linear, `UseZero) => (t: T.t, leftIndex: int, x: float) => {
|
||||
if (leftIndex < 0) {
|
||||
0.0
|
||||
} else if (leftIndex >= T.length(t) - 1) {
|
||||
0.0
|
||||
} else {
|
||||
let x1 = t.xs[leftIndex];
|
||||
let x2 = t.xs[leftIndex + 1];
|
||||
let y1 = t.ys[leftIndex];
|
||||
let y2 = t.ys[leftIndex + 1];
|
||||
let fraction = (x -. x1) /. (x2 -. x1);
|
||||
y1 *. (1. -. fraction) +. y2 *. fraction;
|
||||
};
|
||||
}
|
||||
| (`Linear, `UseOutermostPoints) => (t: T.t, leftIndex: int, x: float) => {
|
||||
if (leftIndex < 0) {
|
||||
t.ys[0];
|
||||
} else if (leftIndex >= T.length(t) - 1) {
|
||||
t.ys[T.length(t) - 1]
|
||||
} else {
|
||||
let x1 = t.xs[leftIndex];
|
||||
let x2 = t.xs[leftIndex + 1];
|
||||
let y1 = t.ys[leftIndex];
|
||||
let y2 = t.ys[leftIndex + 1];
|
||||
let fraction = (x -. x1) /. (x2 -. x1);
|
||||
y1 *. (1. -. fraction) +. y2 *. fraction;
|
||||
};
|
||||
}
|
||||
| (`Stepwise, `UseZero) => (t: T.t, leftIndex: int, x: float) => {
|
||||
if (leftIndex < 0) {
|
||||
0.0
|
||||
} else if (leftIndex >= T.length(t) - 1) {
|
||||
0.0
|
||||
} else {
|
||||
t.ys[leftIndex];
|
||||
}
|
||||
}
|
||||
| (`Stepwise, `UseOutermostPoints) => (t: T.t, leftIndex: int, x: float) => {
|
||||
if (leftIndex < 0) {
|
||||
t.ys[0];
|
||||
} else if (leftIndex >= T.length(t) - 1) {
|
||||
t.ys[T.length(t) - 1]
|
||||
} else {
|
||||
t.ys[leftIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/* Returns a between-points-interpolating function that can be used with PointwiseCombination.combine.
|
||||
For discrete distributions, the probability density between points is zero, so we just return zero here. */
|
||||
let discreteInterpolator: interpolator = (t: T.t, leftIndex: int, x: float) => 0.0;
|
||||
};
|
||||
|
||||
module XsConversion = {
|
||||
let _replaceWithXs = (newXs: array(float), t: T.t): T.t => {
|
||||
let newYs = Belt.Array.map(newXs, XtoY.linear(_, t));
|
||||
{xs: newXs, ys: newYs};
|
||||
};
|
||||
|
||||
let equallyDivideXByMass = (newLength: int, integral: T.t) =>
|
||||
E.A.Floats.range(0.0, 1.0, newLength)
|
||||
|> E.A.fmap(YtoX.linear(_, integral));
|
||||
|
||||
let proportionEquallyOverX = (newLength: int, t: T.t): T.t => {
|
||||
T.equallyDividedXs(t, newLength) |> _replaceWithXs(_, t);
|
||||
};
|
||||
|
||||
let proportionByProbabilityMass =
|
||||
(newLength: int, integral: T.t, t: T.t): T.t => {
|
||||
integral
|
||||
|> equallyDivideXByMass(newLength) // creates a new set of xs at evenly spaced percentiles
|
||||
|> _replaceWithXs(_, t); // linearly interpolates new ys for the new xs
|
||||
};
|
||||
};
|
||||
|
||||
module Zipped = {
|
||||
type zipped = array((float, float));
|
||||
let compareYs = ((_, y1), (_, y2)) => y1 > y2 ? 1 : 0;
|
||||
let compareXs = ((x1, _), (x2, _)) => x1 > x2 ? 1 : 0;
|
||||
let sortByY = (t: zipped) => t |> E.A.stableSortBy(_, compareYs);
|
||||
let sortByX = (t: zipped) => t |> E.A.stableSortBy(_, compareXs);
|
||||
let filterByX = (testFn: (float => bool), t: zipped) => t |> E.A.filter(((x, _)) => testFn(x));
|
||||
};
|
||||
|
||||
module PointwiseCombination = {
|
||||
|
||||
// t1Interpolator and t2Interpolator are functions from XYShape.XtoY, e.g. linearBetweenPointsExtrapolateFlat.
|
||||
let combine = [%raw {| // : (float => float => float, T.t, T.t, bool) => T.t
|
||||
// This function combines two xyShapes by looping through both of them simultaneously.
|
||||
// It always moves on to the next smallest x, whether that's in the first or second input's xs,
|
||||
// and interpolates the value on the other side, thus accumulating xs and ys.
|
||||
// This is written in raw JS because this can still be a bottleneck, and using refs for the i and j indices is quite painful.
|
||||
|
||||
function(fn, interpolator, t1, t2) {
|
||||
let t1n = t1.xs.length;
|
||||
let t2n = t2.xs.length;
|
||||
let outX = [];
|
||||
let outY = [];
|
||||
let i = -1;
|
||||
let j = -1;
|
||||
|
||||
while (i <= t1n - 1 && j <= t2n - 1) {
|
||||
let x, ya, yb;
|
||||
if (j == t2n - 1 && i < t1n - 1 ||
|
||||
t1.xs[i+1] < t2.xs[j+1]) { // if a has to catch up to b, or if b is already done
|
||||
i++;
|
||||
|
||||
x = t1.xs[i];
|
||||
ya = t1.ys[i];
|
||||
|
||||
yb = interpolator(t2, j, x);
|
||||
} else if (i == t1n - 1 && j < t2n - 1 ||
|
||||
t1.xs[i+1] > t2.xs[j+1]) { // if b has to catch up to a, or if a is already done
|
||||
j++;
|
||||
|
||||
x = t2.xs[j];
|
||||
yb = t2.ys[j];
|
||||
|
||||
ya = interpolator(t1, i, x);
|
||||
} else if (i < t1n - 1 && j < t2n && t1.xs[i+1] === t2.xs[j+1]) { // if they happen to be equal, move both ahead
|
||||
i++;
|
||||
j++;
|
||||
x = t1.xs[i];
|
||||
ya = t1.ys[i];
|
||||
yb = t2.ys[j];
|
||||
} else if (i === t1n - 1 && j === t2n - 1) {
|
||||
// finished!
|
||||
i = t1n;
|
||||
j = t2n;
|
||||
continue;
|
||||
} else {
|
||||
console.log("Error!", i, j);
|
||||
}
|
||||
|
||||
outX.push(x);
|
||||
outY.push(fn(ya, yb));
|
||||
}
|
||||
|
||||
return {xs: outX, ys: outY};
|
||||
}
|
||||
|}];
|
||||
|
||||
let combineEvenXs =
|
||||
(
|
||||
~fn,
|
||||
~xToYSelection,
|
||||
sampleCount,
|
||||
t1: T.t,
|
||||
t2: T.t,
|
||||
) => {
|
||||
|
||||
switch ((E.A.length(t1.xs), E.A.length(t2.xs))) {
|
||||
| (0, 0) => T.empty
|
||||
| (0, _) => t2
|
||||
| (_, 0) => t1
|
||||
| (_, _) => {
|
||||
let allXs = Ts.equallyDividedXs([|t1, t2|], sampleCount);
|
||||
|
||||
let allYs = allXs |> E.A.fmap(x => fn(xToYSelection(x, t1), xToYSelection(x, t2)));
|
||||
|
||||
T.fromArrays(allXs, allYs);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// TODO: I'd bet this is pretty slow. Maybe it would be faster to intersperse Xs and Ys separately.
|
||||
let intersperse = (t1: T.t, t2: T.t) => {
|
||||
E.A.intersperse(T.zip(t1), T.zip(t2)) |> T.fromZippedArray;
|
||||
};
|
||||
};
|
||||
|
||||
// I'm really not sure this part is actually what we want at this point.
|
||||
module Range = {
|
||||
// ((lastX, lastY), (nextX, nextY))
|
||||
type zippedRange = ((float, float), (float, float));
|
||||
|
||||
let toT = T.fromZippedArray;
|
||||
let nextX = ((_, (nextX, _)): zippedRange) => nextX;
|
||||
|
||||
let rangePointAssumingSteps = (((_, lastY), (nextX, _)): zippedRange) => (
|
||||
nextX,
|
||||
lastY,
|
||||
);
|
||||
|
||||
let rangeAreaAssumingTriangles =
|
||||
(((lastX, lastY), (nextX, nextY)): zippedRange) =>
|
||||
(nextX -. lastX) *. (lastY +. nextY) /. 2.;
|
||||
|
||||
//Todo: figure out how to without making new array.
|
||||
let rangeAreaAssumingTrapezoids =
|
||||
(((lastX, lastY), (nextX, nextY)): zippedRange) =>
|
||||
(nextX -. lastX)
|
||||
*. (Js.Math.min_float(lastY, nextY) +. (lastY +. nextY) /. 2.);
|
||||
|
||||
let delta_y_over_delta_x =
|
||||
(((lastX, lastY), (nextX, nextY)): zippedRange) =>
|
||||
(nextY -. lastY) /. (nextX -. lastX);
|
||||
|
||||
let mapYsBasedOnRanges = (fn, t) =>
|
||||
Belt.Array.zip(t.xs, t.ys)
|
||||
|> E.A.toRanges
|
||||
|> E.R.toOption
|
||||
|> E.O.fmap(r => r |> Belt.Array.map(_, r => (nextX(r), fn(r))));
|
||||
|
||||
// This code is messy, in part because I'm trying to make things easy on garbage collection here.
|
||||
// It's using triangles instead of trapezoids right now.
|
||||
let integrateWithTriangles = ({xs, ys}) => {
|
||||
let length = E.A.length(xs);
|
||||
let cumulativeY = Belt.Array.make(length, 0.0);
|
||||
for (x in 0 to E.A.length(xs) - 2) {
|
||||
let _ =
|
||||
Belt.Array.set(
|
||||
cumulativeY,
|
||||
x + 1,
|
||||
(xs[x + 1] -. xs[x]) // dx
|
||||
*. ((ys[x] +. ys[x + 1]) /. 2.) // (1/2) * (avgY)
|
||||
+. cumulativeY[x],
|
||||
);
|
||||
();
|
||||
};
|
||||
Some({xs, ys: cumulativeY});
|
||||
};
|
||||
|
||||
let derivative = mapYsBasedOnRanges(delta_y_over_delta_x);
|
||||
|
||||
let stepwiseToLinear = ({xs, ys}: T.t): T.t => {
|
||||
// adds points at the bottom of each step.
|
||||
let length = E.A.length(xs);
|
||||
let newXs: array(float) = Belt.Array.makeUninitializedUnsafe(2 * length);
|
||||
let newYs: array(float) = Belt.Array.makeUninitializedUnsafe(2 * length);
|
||||
|
||||
Belt.Array.set(newXs, 0, xs[0] -. epsilon_float) |> ignore;
|
||||
Belt.Array.set(newYs, 0, 0.) |> ignore;
|
||||
Belt.Array.set(newXs, 1, xs[0]) |> ignore;
|
||||
Belt.Array.set(newYs, 1, ys[0]) |> ignore;
|
||||
|
||||
for (i in 1 to E.A.length(xs) - 1) {
|
||||
Belt.Array.set(newXs, i * 2, xs[i] -. epsilon_float) |> ignore;
|
||||
Belt.Array.set(newYs, i * 2, ys[i-1]) |> ignore;
|
||||
Belt.Array.set(newXs, i * 2 + 1, xs[i]) |> ignore;
|
||||
Belt.Array.set(newYs, i * 2 + 1, ys[i]) |> ignore;
|
||||
();
|
||||
};
|
||||
|
||||
{xs: newXs, ys: newYs};
|
||||
};
|
||||
|
||||
// TODO: I think this isn't needed by any functions anymore.
|
||||
let stepsToContinuous = t => {
|
||||
// TODO: It would be nicer if this the diff didn't change the first element, and also maybe if there were a more elegant way of doing this.
|
||||
let diff = T.xTotalRange(t) |> (r => r *. 0.00001);
|
||||
let items =
|
||||
switch (E.A.toRanges(Belt.Array.zip(t.xs, t.ys))) {
|
||||
| Ok(items) =>
|
||||
Some(
|
||||
items
|
||||
|> Belt.Array.map(_, rangePointAssumingSteps)
|
||||
|> T.fromZippedArray
|
||||
|> PointwiseCombination.intersperse(t |> T.mapX(e => e +. diff)),
|
||||
)
|
||||
| _ => Some(t)
|
||||
};
|
||||
let first = items |> E.O.fmap(T.zip) |> E.O.bind(_, E.A.get(_, 0));
|
||||
switch (items, first) {
|
||||
| (Some(items), Some((0.0, _))) => Some(items)
|
||||
| (Some(items), Some((firstX, _))) =>
|
||||
let all = E.A.append([|(firstX, 0.0)|], items |> T.zip);
|
||||
all |> T.fromZippedArray |> E.O.some;
|
||||
| _ => None
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
let pointLogScore = (prediction, answer) =>
|
||||
switch (answer) {
|
||||
| 0. => 0.0
|
||||
| answer => answer *. Js.Math.log2(Js.Math.abs_float(prediction /. answer))
|
||||
};
|
||||
|
||||
let logScorePoint = (sampleCount, t1, t2) =>
|
||||
PointwiseCombination.combineEvenXs(
|
||||
~fn=pointLogScore,
|
||||
~xToYSelection=XtoY.linear,
|
||||
sampleCount,
|
||||
t1,
|
||||
t2,
|
||||
)
|
||||
|> Range.integrateWithTriangles
|
||||
|> E.O.fmap(T.accumulateYs((+.)))
|
||||
|> E.O.fmap(Pairs.last)
|
||||
|> E.O.fmap(Pairs.y);
|
||||
|
||||
module Analysis = {
|
||||
let integrateContinuousShape =
|
||||
(
|
||||
~indefiniteIntegralStepwise=(p, h1) => h1 *. p,
|
||||
~indefiniteIntegralLinear=(p, a, b) => a *. p +. b *. p ** 2.0 /. 2.0,
|
||||
t: DistTypes.continuousShape,
|
||||
)
|
||||
: float => {
|
||||
let xs = t.xyShape.xs;
|
||||
let ys = t.xyShape.ys;
|
||||
|
||||
E.A.reducei(
|
||||
xs,
|
||||
0.0,
|
||||
(acc, _x, i) => {
|
||||
let areaUnderIntegral =
|
||||
// TODO Take this switch statement out of the loop body
|
||||
switch (t.interpolation, i) {
|
||||
| (_, 0) => 0.0
|
||||
| (`Stepwise, _) =>
|
||||
indefiniteIntegralStepwise(xs[i], ys[i - 1])
|
||||
-. indefiniteIntegralStepwise(xs[i - 1], ys[i - 1])
|
||||
| (`Linear, _) =>
|
||||
let x1 = xs[i - 1];
|
||||
let x2 = xs[i];
|
||||
if (x1 == x2) {
|
||||
0.0
|
||||
} else {
|
||||
let h1 = ys[i - 1];
|
||||
let h2 = ys[i];
|
||||
let b = (h1 -. h2) /. (x1 -. x2);
|
||||
let a = h1 -. b *. x1;
|
||||
indefiniteIntegralLinear(x2, a, b)
|
||||
-. indefiniteIntegralLinear(x1, a, b);
|
||||
};
|
||||
};
|
||||
acc +. areaUnderIntegral;
|
||||
},
|
||||
);
|
||||
};
|
||||
|
||||
let getMeanOfSquaresContinuousShape = (t: DistTypes.continuousShape) => {
|
||||
let indefiniteIntegralLinear = (p, a, b) =>
|
||||
a *. p ** 3.0 /. 3.0 +. b *. p ** 4.0 /. 4.0;
|
||||
let indefiniteIntegralStepwise = (p, h1) => h1 *. p ** 3.0 /. 3.0;
|
||||
integrateContinuousShape(
|
||||
~indefiniteIntegralStepwise,
|
||||
~indefiniteIntegralLinear,
|
||||
t,
|
||||
);
|
||||
};
|
||||
|
||||
let getVarianceDangerously =
|
||||
(t: 't, mean: 't => float, getMeanOfSquares: 't => float): float => {
|
||||
let meanSquared = mean(t) ** 2.0;
|
||||
let meanOfSquares = getMeanOfSquares(t);
|
||||
meanOfSquares -. meanSquared;
|
||||
};
|
||||
|
||||
let squareXYShape = T.mapX(x => x ** 2.0)
|
||||
};
|
|
@ -1,21 +0,0 @@
|
|||
open ExpressionTypes.ExpressionTree;
|
||||
|
||||
let toString = ExpressionTreeBasic.toString;
|
||||
let envs = (samplingInputs, environment) => {
|
||||
{samplingInputs, environment, evaluateNode: ExpressionTreeEvaluator.toLeaf};
|
||||
};
|
||||
|
||||
let toLeaf = (samplingInputs, environment, node: node) =>
|
||||
ExpressionTreeEvaluator.toLeaf(envs(samplingInputs, environment), node);
|
||||
let toShape = (samplingInputs, environment, node: node) => {
|
||||
switch (toLeaf(samplingInputs, environment, node)) {
|
||||
| Ok(`RenderedDist(shape)) => Ok(shape)
|
||||
| Ok(_) => Error("Rendering failed.")
|
||||
| Error(e) => Error(e)
|
||||
};
|
||||
};
|
||||
|
||||
let runFunction = (samplingInputs, environment, inputs, fn: PTypes.Function.t) => {
|
||||
let params = envs(samplingInputs, environment);
|
||||
PTypes.Function.run(params, inputs, fn);
|
||||
};
|
|
@ -1,35 +0,0 @@
|
|||
open ExpressionTypes.ExpressionTree;
|
||||
|
||||
let rec toString: node => string =
|
||||
fun
|
||||
| `SymbolicDist(d) => SymbolicDist.T.toString(d)
|
||||
| `RenderedDist(_) => "[renderedShape]"
|
||||
| `AlgebraicCombination(op, t1, t2) =>
|
||||
Operation.Algebraic.format(op, toString(t1), toString(t2))
|
||||
| `PointwiseCombination(op, t1, t2) =>
|
||||
Operation.Pointwise.format(op, toString(t1), toString(t2))
|
||||
| `Normalize(t) => "normalize(k" ++ toString(t) ++ ")"
|
||||
| `Truncate(lc, rc, t) =>
|
||||
Operation.T.truncateToString(lc, rc, toString(t))
|
||||
| `Render(t) => toString(t)
|
||||
| `Symbol(t) => "Symbol: " ++ t
|
||||
| `FunctionCall(name, args) =>
|
||||
"[Function call: ("
|
||||
++ name
|
||||
++ (args |> E.A.fmap(toString) |> Js.String.concatMany(_, ","))
|
||||
++ ")]"
|
||||
| `Function(args, internal) =>
|
||||
"[Function: ("
|
||||
++ (args |> Js.String.concatMany(_, ","))
|
||||
++ toString(internal)
|
||||
++ ")]"
|
||||
| `Array(a) =>
|
||||
"[" ++ (a |> E.A.fmap(toString) |> Js.String.concatMany(_, ",")) ++ "]"
|
||||
| `Hash(h) =>
|
||||
"{"
|
||||
++ (
|
||||
h
|
||||
|> E.A.fmap(((name, value)) => name ++ ":" ++ toString(value))
|
||||
|> Js.String.concatMany(_, ",")
|
||||
)
|
||||
++ "}";
|
|
@ -1,332 +0,0 @@
|
|||
open ExpressionTypes;
|
||||
open ExpressionTypes.ExpressionTree;
|
||||
|
||||
type t = node;
|
||||
type tResult = node => result(node, string);
|
||||
|
||||
/* Given two random variables A and B, this returns the distribution
|
||||
of a new variable that is the result of the operation on A and B.
|
||||
For instance, normal(0, 1) + normal(1, 1) -> normal(1, 2).
|
||||
In general, this is implemented via convolution. */
|
||||
module AlgebraicCombination = {
|
||||
let tryAnalyticalSimplification = (operation, t1: t, t2: t) =>
|
||||
switch (operation, t1, t2) {
|
||||
| (operation, `SymbolicDist(d1), `SymbolicDist(d2)) =>
|
||||
switch (SymbolicDist.T.tryAnalyticalSimplification(d1, d2, operation)) {
|
||||
| `AnalyticalSolution(symbolicDist) => Ok(`SymbolicDist(symbolicDist))
|
||||
| `Error(er) => Error(er)
|
||||
| `NoSolution => Ok(`AlgebraicCombination((operation, t1, t2)))
|
||||
}
|
||||
| _ => Ok(`AlgebraicCombination((operation, t1, t2)))
|
||||
};
|
||||
|
||||
let combinationByRendering =
|
||||
(evaluationParams, algebraicOp, t1: node, t2: node)
|
||||
: result(node, string) => {
|
||||
E.R.merge(
|
||||
Render.ensureIsRenderedAndGetShape(evaluationParams, t1),
|
||||
Render.ensureIsRenderedAndGetShape(evaluationParams, t2),
|
||||
)
|
||||
|> E.R.fmap(((a, b)) =>
|
||||
`RenderedDist(Shape.combineAlgebraically(algebraicOp, a, b))
|
||||
);
|
||||
};
|
||||
|
||||
let nodeScore: node => int =
|
||||
fun
|
||||
| `SymbolicDist(`Float(_)) => 1
|
||||
| `SymbolicDist(_) => 1000
|
||||
| `RenderedDist(Discrete(m)) => m.xyShape |> XYShape.T.length
|
||||
| `RenderedDist(Mixed(_)) => 1000
|
||||
| `RenderedDist(Continuous(_)) => 1000
|
||||
| _ => 1000;
|
||||
|
||||
let choose = (t1: node, t2: node) => {
|
||||
nodeScore(t1) * nodeScore(t2) > 10000 ? `Sampling : `Analytical;
|
||||
};
|
||||
|
||||
let combine =
|
||||
(evaluationParams, algebraicOp, t1: node, t2: node)
|
||||
: result(node, string) => {
|
||||
E.R.merge(
|
||||
PTypes.SamplingDistribution.renderIfIsNotSamplingDistribution(
|
||||
evaluationParams,
|
||||
t1,
|
||||
),
|
||||
PTypes.SamplingDistribution.renderIfIsNotSamplingDistribution(
|
||||
evaluationParams,
|
||||
t2,
|
||||
),
|
||||
)
|
||||
|> E.R.bind(_, ((a, b)) =>
|
||||
switch (choose(a, b)) {
|
||||
| `Sampling =>
|
||||
PTypes.SamplingDistribution.combineShapesUsingSampling(
|
||||
evaluationParams,
|
||||
algebraicOp,
|
||||
a,
|
||||
b,
|
||||
)
|
||||
| `Analytical =>
|
||||
combinationByRendering(evaluationParams, algebraicOp, a, b)
|
||||
}
|
||||
);
|
||||
};
|
||||
|
||||
let operationToLeaf =
|
||||
(
|
||||
evaluationParams: evaluationParams,
|
||||
algebraicOp: ExpressionTypes.algebraicOperation,
|
||||
t1: t,
|
||||
t2: t,
|
||||
)
|
||||
: result(node, string) =>
|
||||
algebraicOp
|
||||
|> tryAnalyticalSimplification(_, t1, t2)
|
||||
|> E.R.bind(
|
||||
_,
|
||||
fun
|
||||
| `SymbolicDist(_) as t => Ok(t)
|
||||
| _ => combine(evaluationParams, algebraicOp, t1, t2),
|
||||
);
|
||||
};
|
||||
|
||||
module PointwiseCombination = {
|
||||
let pointwiseAdd = (evaluationParams: evaluationParams, t1: t, t2: t) => {
|
||||
switch (
|
||||
Render.render(evaluationParams, t1),
|
||||
Render.render(evaluationParams, t2),
|
||||
) {
|
||||
| (Ok(`RenderedDist(rs1)), Ok(`RenderedDist(rs2))) =>
|
||||
Ok(
|
||||
`RenderedDist(
|
||||
Shape.combinePointwise(
|
||||
~integralSumCachesFn=(a, b) => Some(a +. b),
|
||||
~integralCachesFn=
|
||||
(a, b) =>
|
||||
Some(
|
||||
Continuous.combinePointwise(
|
||||
~distributionType=`CDF,
|
||||
(+.),
|
||||
a,
|
||||
b,
|
||||
),
|
||||
),
|
||||
(+.),
|
||||
rs1,
|
||||
rs2,
|
||||
),
|
||||
),
|
||||
)
|
||||
| (Error(e1), _) => Error(e1)
|
||||
| (_, Error(e2)) => Error(e2)
|
||||
| _ => Error("Pointwise combination: rendering failed.")
|
||||
};
|
||||
};
|
||||
|
||||
let pointwiseCombine =
|
||||
(fn, evaluationParams: evaluationParams, t1: t, t2: t) => {
|
||||
// TODO: construct a function that we can easily sample from, to construct
|
||||
// a RenderedDist. Use the xMin and xMax of the rendered shapes to tell the sampling function where to look.
|
||||
// TODO: This should work for symbolic distributions too!
|
||||
switch (
|
||||
Render.render(evaluationParams, t1),
|
||||
Render.render(evaluationParams, t2),
|
||||
) {
|
||||
| (Ok(`RenderedDist(rs1)), Ok(`RenderedDist(rs2))) =>
|
||||
Ok(`RenderedDist(Shape.combinePointwise(fn, rs1, rs2)))
|
||||
| (Error(e1), _) => Error(e1)
|
||||
| (_, Error(e2)) => Error(e2)
|
||||
| _ => Error("Pointwise combination: rendering failed.")
|
||||
};
|
||||
};
|
||||
|
||||
let operationToLeaf =
|
||||
(
|
||||
evaluationParams: evaluationParams,
|
||||
pointwiseOp: pointwiseOperation,
|
||||
t1: t,
|
||||
t2: t,
|
||||
) => {
|
||||
switch (pointwiseOp) {
|
||||
| `Add => pointwiseAdd(evaluationParams, t1, t2)
|
||||
| `Multiply => pointwiseCombine(( *. ), evaluationParams, t1, t2)
|
||||
| `Exponentiate => pointwiseCombine(( ** ), evaluationParams, t1, t2)
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
module Truncate = {
|
||||
let trySimplification = (leftCutoff, rightCutoff, t): simplificationResult => {
|
||||
switch (leftCutoff, rightCutoff, t) {
|
||||
| (None, None, t) => `Solution(t)
|
||||
| (Some(lc), Some(rc), _) when lc > rc =>
|
||||
`Error(
|
||||
"Left truncation bound must be smaller than right truncation bound.",
|
||||
)
|
||||
| (lc, rc, `SymbolicDist(`Uniform(u))) =>
|
||||
`Solution(
|
||||
`SymbolicDist(`Uniform(SymbolicDist.Uniform.truncate(lc, rc, u))),
|
||||
)
|
||||
| _ => `NoSolution
|
||||
};
|
||||
};
|
||||
|
||||
let truncateAsShape =
|
||||
(evaluationParams: evaluationParams, leftCutoff, rightCutoff, t) => {
|
||||
// TODO: use named args for xMin/xMax in renderToShape; if we're lucky we can at least get the tail
|
||||
// of a distribution we otherwise wouldn't get at all
|
||||
switch (Render.ensureIsRendered(evaluationParams, t)) {
|
||||
| Ok(`RenderedDist(rs)) =>
|
||||
Ok(`RenderedDist(Shape.T.truncate(leftCutoff, rightCutoff, rs)))
|
||||
| Error(e) => Error(e)
|
||||
| _ => Error("Could not truncate distribution.")
|
||||
};
|
||||
};
|
||||
|
||||
let operationToLeaf =
|
||||
(
|
||||
evaluationParams,
|
||||
leftCutoff: option(float),
|
||||
rightCutoff: option(float),
|
||||
t: node,
|
||||
)
|
||||
: result(node, string) => {
|
||||
t
|
||||
|> trySimplification(leftCutoff, rightCutoff)
|
||||
|> (
|
||||
fun
|
||||
| `Solution(t) => Ok(t)
|
||||
| `Error(e) => Error(e)
|
||||
| `NoSolution =>
|
||||
truncateAsShape(evaluationParams, leftCutoff, rightCutoff, t)
|
||||
);
|
||||
};
|
||||
};
|
||||
|
||||
module Normalize = {
|
||||
let rec operationToLeaf = (evaluationParams, t: node): result(node, string) => {
|
||||
Js.log2("normalize", t);
|
||||
switch (t) {
|
||||
| `RenderedDist(s) => Ok(`RenderedDist(Shape.T.normalize(s)))
|
||||
| `SymbolicDist(_) => Ok(t)
|
||||
| _ => evaluateAndRetry(evaluationParams, operationToLeaf, t)
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
module FunctionCall = {
|
||||
let _runHardcodedFunction = (name, evaluationParams, args) =>
|
||||
TypeSystem.Function.Ts.findByNameAndRun(
|
||||
HardcodedFunctions.all,
|
||||
name,
|
||||
evaluationParams,
|
||||
args,
|
||||
);
|
||||
|
||||
let _runLocalFunction = (name, evaluationParams: evaluationParams, args) => {
|
||||
Environment.getFunction(evaluationParams.environment, name)
|
||||
|> E.R.bind(_, ((argNames, fn)) =>
|
||||
PTypes.Function.run(evaluationParams, args, (argNames, fn))
|
||||
);
|
||||
};
|
||||
|
||||
let _runWithEvaluatedInputs =
|
||||
(
|
||||
evaluationParams: ExpressionTypes.ExpressionTree.evaluationParams,
|
||||
name,
|
||||
args: array(ExpressionTypes.ExpressionTree.node),
|
||||
) => {
|
||||
_runHardcodedFunction(name, evaluationParams, args)
|
||||
|> E.O.default(_runLocalFunction(name, evaluationParams, args));
|
||||
};
|
||||
|
||||
// TODO: This forces things to be floats
|
||||
let run = (evaluationParams, name, args) => {
|
||||
args
|
||||
|> E.A.fmap(a => evaluationParams.evaluateNode(evaluationParams, a))
|
||||
|> E.A.R.firstErrorOrOpen
|
||||
|> E.R.bind(_, _runWithEvaluatedInputs(evaluationParams, name));
|
||||
};
|
||||
};
|
||||
|
||||
module Render = {
|
||||
let rec operationToLeaf =
|
||||
(evaluationParams: evaluationParams, t: node): result(t, string) => {
|
||||
switch (t) {
|
||||
| `Function(_) => Error("Cannot render a function")
|
||||
| `SymbolicDist(d) =>
|
||||
Ok(
|
||||
`RenderedDist(
|
||||
SymbolicDist.T.toShape(
|
||||
evaluationParams.samplingInputs.shapeLength,
|
||||
d,
|
||||
),
|
||||
),
|
||||
)
|
||||
| `RenderedDist(_) as t => Ok(t) // already a rendered shape, we're done here
|
||||
| _ => evaluateAndRetry(evaluationParams, operationToLeaf, t)
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
/* This function recursively goes through the nodes of the parse tree,
|
||||
replacing each Operation node and its subtree with a Data node.
|
||||
Whenever possible, the replacement produces a new Symbolic Data node,
|
||||
but most often it will produce a RenderedDist.
|
||||
This function is used mainly to turn a parse tree into a single RenderedDist
|
||||
that can then be displayed to the user. */
|
||||
let rec toLeaf =
|
||||
(
|
||||
evaluationParams: ExpressionTypes.ExpressionTree.evaluationParams,
|
||||
node: t,
|
||||
)
|
||||
: result(t, string) => {
|
||||
switch (node) {
|
||||
// Leaf nodes just stay leaf nodes
|
||||
| `SymbolicDist(_)
|
||||
| `Function(_)
|
||||
| `RenderedDist(_) => Ok(node)
|
||||
| `Array(args) =>
|
||||
args
|
||||
|> E.A.fmap(toLeaf(evaluationParams))
|
||||
|> E.A.R.firstErrorOrOpen
|
||||
|> E.R.fmap(r => `Array(r))
|
||||
// Operations nevaluationParamsd to be turned into leaves
|
||||
| `AlgebraicCombination(algebraicOp, t1, t2) =>
|
||||
AlgebraicCombination.operationToLeaf(
|
||||
evaluationParams,
|
||||
algebraicOp,
|
||||
t1,
|
||||
t2,
|
||||
)
|
||||
| `PointwiseCombination(pointwiseOp, t1, t2) =>
|
||||
PointwiseCombination.operationToLeaf(
|
||||
evaluationParams,
|
||||
pointwiseOp,
|
||||
t1,
|
||||
t2,
|
||||
)
|
||||
| `Truncate(leftCutoff, rightCutoff, t) =>
|
||||
Truncate.operationToLeaf(evaluationParams, leftCutoff, rightCutoff, t)
|
||||
| `Normalize(t) => Normalize.operationToLeaf(evaluationParams, t)
|
||||
| `Render(t) => Render.operationToLeaf(evaluationParams, t)
|
||||
| `Hash(t) =>
|
||||
t
|
||||
|> E.A.fmap(((name: string, node: node)) =>
|
||||
toLeaf(evaluationParams, node) |> E.R.fmap(r => (name, r))
|
||||
)
|
||||
|> E.A.R.firstErrorOrOpen
|
||||
|> E.R.fmap(r => `Hash(r))
|
||||
| `Symbol(r) =>
|
||||
ExpressionTypes.ExpressionTree.Environment.get(
|
||||
evaluationParams.environment,
|
||||
r,
|
||||
)
|
||||
|> E.O.toResult("Undeclared variable " ++ r)
|
||||
|> E.R.bind(_, toLeaf(evaluationParams))
|
||||
| `FunctionCall(name, args) =>
|
||||
FunctionCall.run(evaluationParams, name, args)
|
||||
|> E.R.bind(_, toLeaf(evaluationParams))
|
||||
}
|
||||
};
|
|
@ -1,180 +0,0 @@
|
|||
type algebraicOperation = [
|
||||
| `Add
|
||||
| `Multiply
|
||||
| `Subtract
|
||||
| `Divide
|
||||
| `Exponentiate
|
||||
];
|
||||
type pointwiseOperation = [ | `Add | `Multiply | `Exponentiate];
|
||||
type scaleOperation = [ | `Multiply | `Exponentiate | `Log];
|
||||
type distToFloatOperation = [
|
||||
| `Pdf(float)
|
||||
| `Cdf(float)
|
||||
| `Inv(float)
|
||||
| `Mean
|
||||
| `Sample
|
||||
];
|
||||
|
||||
module ExpressionTree = {
|
||||
type hash = array((string, node))
|
||||
and node = [
|
||||
| `SymbolicDist(SymbolicTypes.symbolicDist)
|
||||
| `RenderedDist(DistTypes.shape)
|
||||
| `Symbol(string)
|
||||
| `Hash(hash)
|
||||
| `Array(array(node))
|
||||
| `Function(array(string), node)
|
||||
| `AlgebraicCombination(algebraicOperation, node, node)
|
||||
| `PointwiseCombination(pointwiseOperation, node, node)
|
||||
| `Normalize(node)
|
||||
| `Render(node)
|
||||
| `Truncate(option(float), option(float), node)
|
||||
| `FunctionCall(string, array(node))
|
||||
];
|
||||
|
||||
module Hash = {
|
||||
type t('a) = array((string, 'a));
|
||||
let getByName = (t: t('a), name) =>
|
||||
E.A.getBy(t, ((n, _)) => n == name) |> E.O.fmap(((_, r)) => r);
|
||||
|
||||
let getByNameResult = (t: t('a), name) =>
|
||||
getByName(t, name) |> E.O.toResult(name ++ " expected and not found");
|
||||
|
||||
let getByNames = (hash: t('a), names: array(string)) =>
|
||||
names |> E.A.fmap(name => (name, getByName(hash, name)));
|
||||
};
|
||||
// Have nil as option
|
||||
let getFloat = (node: node) =>
|
||||
node
|
||||
|> (
|
||||
fun
|
||||
| `RenderedDist(Discrete({xyShape: {xs: [|x|], ys: [|1.0|]}})) =>
|
||||
Some(x)
|
||||
| `SymbolicDist(`Float(x)) => Some(x)
|
||||
| _ => None
|
||||
);
|
||||
|
||||
let toFloatIfNeeded = (node: node) =>
|
||||
switch (node |> getFloat) {
|
||||
| Some(float) => `SymbolicDist(`Float(float))
|
||||
| None => node
|
||||
};
|
||||
|
||||
type samplingInputs = {
|
||||
sampleCount: int,
|
||||
outputXYPoints: int,
|
||||
kernelWidth: option(float),
|
||||
shapeLength: int,
|
||||
};
|
||||
|
||||
module SamplingInputs = {
|
||||
type t = {
|
||||
sampleCount: option(int),
|
||||
outputXYPoints: option(int),
|
||||
kernelWidth: option(float),
|
||||
shapeLength: option(int),
|
||||
};
|
||||
let withDefaults = (t: t): samplingInputs => {
|
||||
sampleCount: t.sampleCount |> E.O.default(10000),
|
||||
outputXYPoints: t.outputXYPoints |> E.O.default(10000),
|
||||
kernelWidth: t.kernelWidth,
|
||||
shapeLength: t.shapeLength |> E.O.default(10000),
|
||||
};
|
||||
};
|
||||
|
||||
type environment = Belt.Map.String.t(node);
|
||||
|
||||
module Environment = {
|
||||
type t = environment;
|
||||
module MS = Belt.Map.String;
|
||||
let fromArray = MS.fromArray;
|
||||
let empty: t = [||]->fromArray;
|
||||
let mergeKeepSecond = (a: t, b: t) =>
|
||||
MS.merge(a, b, (_, a, b) =>
|
||||
switch (a, b) {
|
||||
| (_, Some(b)) => Some(b)
|
||||
| (Some(a), _) => Some(a)
|
||||
| _ => None
|
||||
}
|
||||
);
|
||||
let update = (t, str, fn) => MS.update(t, str, fn);
|
||||
let get = (t: t, str) => MS.get(t, str);
|
||||
let getFunction = (t: t, str) =>
|
||||
switch (get(t, str)) {
|
||||
| Some(`Function(argNames, fn)) => Ok((argNames, fn))
|
||||
| _ => Error("Function " ++ str ++ " not found")
|
||||
};
|
||||
};
|
||||
|
||||
type evaluationParams = {
|
||||
samplingInputs,
|
||||
environment,
|
||||
evaluateNode: (evaluationParams, node) => Belt.Result.t(node, string),
|
||||
};
|
||||
|
||||
let evaluateNode = (evaluationParams: evaluationParams) =>
|
||||
evaluationParams.evaluateNode(evaluationParams);
|
||||
|
||||
let evaluateAndRetry = (evaluationParams, fn, node) =>
|
||||
node
|
||||
|> evaluationParams.evaluateNode(evaluationParams)
|
||||
|> E.R.bind(_, fn(evaluationParams));
|
||||
|
||||
module Render = {
|
||||
type t = node;
|
||||
|
||||
let render = (evaluationParams: evaluationParams, r) =>
|
||||
`Render(r) |> evaluateNode(evaluationParams);
|
||||
|
||||
let ensureIsRendered = (params, t) =>
|
||||
switch (t) {
|
||||
| `RenderedDist(_) => Ok(t)
|
||||
| _ =>
|
||||
switch (render(params, t)) {
|
||||
| Ok(`RenderedDist(r)) => Ok(`RenderedDist(r))
|
||||
| Ok(_) => Error("Did not render as requested")
|
||||
| Error(e) => Error(e)
|
||||
}
|
||||
};
|
||||
|
||||
let ensureIsRenderedAndGetShape = (params, t) =>
|
||||
switch (ensureIsRendered(params, t)) {
|
||||
| Ok(`RenderedDist(r)) => Ok(r)
|
||||
| Ok(_) => Error("Did not render as requested")
|
||||
| Error(e) => Error(e)
|
||||
};
|
||||
|
||||
let getShape = (item: node) =>
|
||||
switch (item) {
|
||||
| `RenderedDist(r) => Some(r)
|
||||
| _ => None
|
||||
};
|
||||
|
||||
let _toFloat = (t: DistTypes.shape) =>
|
||||
switch (t) {
|
||||
| Discrete({xyShape: {xs: [|x|], ys: [|1.0|]}}) =>
|
||||
Some(`SymbolicDist(`Float(x)))
|
||||
| _ => None
|
||||
};
|
||||
|
||||
let toFloat = (item: node): result(node, string) =>
|
||||
item
|
||||
|> getShape
|
||||
|> E.O.bind(_, _toFloat)
|
||||
|> E.O.toResult("Not valid shape");
|
||||
};
|
||||
};
|
||||
|
||||
type simplificationResult = [
|
||||
| `Solution(ExpressionTree.node)
|
||||
| `Error(string)
|
||||
| `NoSolution
|
||||
];
|
||||
|
||||
module Program = {
|
||||
type statement = [
|
||||
| `Assignment(string, ExpressionTree.node)
|
||||
| `Expression(ExpressionTree.node)
|
||||
];
|
||||
type program = array(statement);
|
||||
};
|
|
@ -1,353 +0,0 @@
|
|||
module MathJsonToMathJsAdt = {
|
||||
type arg =
|
||||
| Symbol(string)
|
||||
| Value(float)
|
||||
| Fn(fn)
|
||||
| Array(array(arg))
|
||||
| Blocks(array(arg))
|
||||
| Object(Js.Dict.t(arg))
|
||||
| Assignment(arg, arg)
|
||||
| FunctionAssignment(fnAssignment)
|
||||
and fn = {
|
||||
name: string,
|
||||
args: array(arg),
|
||||
}
|
||||
and fnAssignment = {
|
||||
name: string,
|
||||
args: array(string),
|
||||
expression: arg,
|
||||
};
|
||||
|
||||
let rec run = (j: Js.Json.t) =>
|
||||
Json.Decode.(
|
||||
switch (field("mathjs", string, j)) {
|
||||
| "FunctionNode" =>
|
||||
let args = j |> field("args", array(run));
|
||||
let name = j |> optional(field("fn", field("name", string)));
|
||||
name |> E.O.fmap(name => Fn({name, args: args |> E.A.O.concatSomes}));
|
||||
| "OperatorNode" =>
|
||||
let args = j |> field("args", array(run));
|
||||
Some(
|
||||
Fn({
|
||||
name: j |> field("fn", string),
|
||||
args: args |> E.A.O.concatSomes,
|
||||
}),
|
||||
);
|
||||
| "ConstantNode" =>
|
||||
optional(field("value", Json.Decode.float), j)
|
||||
|> E.O.fmap(r => Value(r))
|
||||
| "ParenthesisNode" => j |> field("content", run)
|
||||
| "ObjectNode" =>
|
||||
let properties = j |> field("properties", dict(run));
|
||||
Js.Dict.entries(properties)
|
||||
|> E.A.fmap(((key, value)) => value |> E.O.fmap(v => (key, v)))
|
||||
|> E.A.O.concatSomes
|
||||
|> Js.Dict.fromArray
|
||||
|> (r => Some(Object(r)));
|
||||
| "ArrayNode" =>
|
||||
let items = field("items", array(run), j);
|
||||
Some(Array(items |> E.A.O.concatSomes));
|
||||
| "SymbolNode" => Some(Symbol(field("name", string, j)))
|
||||
| "AssignmentNode" =>
|
||||
let object_ = j |> field("object", run);
|
||||
let value_ = j |> field("value", run);
|
||||
switch (object_, value_) {
|
||||
| (Some(o), Some(v)) => Some(Assignment(o, v))
|
||||
| _ => None
|
||||
};
|
||||
| "BlockNode" =>
|
||||
let block = r => r |> field("node", run);
|
||||
let args = j |> field("blocks", array(block)) |> E.A.O.concatSomes;
|
||||
Some(Blocks(args));
|
||||
| "FunctionAssignmentNode" =>
|
||||
let name = j |> field("name", string);
|
||||
let args = j |> field("params", array(field("name", string)));
|
||||
let expression = j |> field("expr", run);
|
||||
expression
|
||||
|> E.O.fmap(expression =>
|
||||
FunctionAssignment({name, args, expression})
|
||||
);
|
||||
| n =>
|
||||
Js.log3("Couldn't parse mathjs node", j, n);
|
||||
None;
|
||||
}
|
||||
);
|
||||
};
|
||||
|
||||
module MathAdtToDistDst = {
|
||||
open MathJsonToMathJsAdt;
|
||||
|
||||
let handleSymbol = sym => {
|
||||
Ok(`Symbol(sym));
|
||||
};
|
||||
|
||||
// TODO: This only works on the top level, which needs to be refactored. Also, I think functions don't need to be done like this anymore.
|
||||
module MathAdtCleaner = {
|
||||
let transformWithSymbol = (f: float, s: string) =>
|
||||
switch (s) {
|
||||
| "K" => Some(f *. 1000.)
|
||||
| "M" => Some(f *. 1000000.)
|
||||
| "B" => Some(f *. 1000000000.)
|
||||
| "T" => Some(f *. 1000000000000.)
|
||||
| _ => None
|
||||
};
|
||||
let rec run =
|
||||
fun
|
||||
| Fn({name: "multiply", args: [|Value(f), Symbol(s)|]}) as doNothing =>
|
||||
transformWithSymbol(f, s)
|
||||
|> E.O.fmap(r => Value(r))
|
||||
|> E.O.default(doNothing)
|
||||
| Fn({name: "unaryMinus", args: [|Value(f)|]}) => Value((-1.0) *. f)
|
||||
| Fn({name, args}) => Fn({name, args: args |> E.A.fmap(run)})
|
||||
| Array(args) => Array(args |> E.A.fmap(run))
|
||||
| Symbol(s) => Symbol(s)
|
||||
| Value(v) => Value(v)
|
||||
| Blocks(args) => Blocks(args |> E.A.fmap(run))
|
||||
| Assignment(a, b) => Assignment(a, run(b))
|
||||
| FunctionAssignment(a) => FunctionAssignment(a)
|
||||
| Object(v) =>
|
||||
Object(
|
||||
v
|
||||
|> Js.Dict.entries
|
||||
|> E.A.fmap(((key, value)) => (key, run(value)))
|
||||
|> Js.Dict.fromArray,
|
||||
);
|
||||
};
|
||||
|
||||
let lognormal = (args, parseArgs, nodeParser) =>
|
||||
switch (args) {
|
||||
| [|Object(o)|] =>
|
||||
let g = s =>
|
||||
Js.Dict.get(o, s)
|
||||
|> E.O.toResult("Variable was empty")
|
||||
|> E.R.bind(_, nodeParser);
|
||||
switch (g("mean"), g("stdev"), g("mu"), g("sigma")) {
|
||||
| (Ok(mean), Ok(stdev), _, _) =>
|
||||
Ok(`FunctionCall(("lognormalFromMeanAndStdDev", [|mean, stdev|])))
|
||||
| (_, _, Ok(mu), Ok(sigma)) =>
|
||||
Ok(`FunctionCall(("lognormal", [|mu, sigma|])))
|
||||
| _ =>
|
||||
Error(
|
||||
"Lognormal distribution needs either mean and stdev or mu and sigma",
|
||||
)
|
||||
};
|
||||
| _ =>
|
||||
parseArgs()
|
||||
|> E.R.fmap((args: array(ExpressionTypes.ExpressionTree.node)) =>
|
||||
`FunctionCall(("lognormal", args))
|
||||
)
|
||||
};
|
||||
|
||||
// Error("Dotwise exponentiation needs two operands")
|
||||
let operationParser =
|
||||
(
|
||||
name: string,
|
||||
args: result(array(ExpressionTypes.ExpressionTree.node), string),
|
||||
)
|
||||
: result(ExpressionTypes.ExpressionTree.node, string) => {
|
||||
let toOkAlgebraic = r => Ok(`AlgebraicCombination(r));
|
||||
let toOkPointwise = r => Ok(`PointwiseCombination(r));
|
||||
let toOkTruncate = r => Ok(`Truncate(r));
|
||||
args
|
||||
|> E.R.bind(_, args => {
|
||||
switch (name, args) {
|
||||
| ("add", [|l, r|]) => toOkAlgebraic((`Add, l, r))
|
||||
| ("add", _) => Error("Addition needs two operands")
|
||||
| ("unaryMinus", [|l|]) =>
|
||||
toOkAlgebraic((`Multiply, `SymbolicDist(`Float(-1.0)), l))
|
||||
| ("subtract", [|l, r|]) => toOkAlgebraic((`Subtract, l, r))
|
||||
| ("subtract", _) => Error("Subtraction needs two operands")
|
||||
| ("multiply", [|l, r|]) => toOkAlgebraic((`Multiply, l, r))
|
||||
| ("multiply", _) => Error("Multiplication needs two operands")
|
||||
| ("pow", [|l, r|]) => toOkAlgebraic((`Exponentiate, l, r))
|
||||
| ("pow", _) => Error("Exponentiation needs two operands")
|
||||
| ("dotMultiply", [|l, r|]) => toOkPointwise((`Multiply, l, r))
|
||||
| ("dotMultiply", _) =>
|
||||
Error("Dotwise multiplication needs two operands")
|
||||
| ("dotPow", [|l, r|]) => toOkPointwise((`Exponentiate, l, r))
|
||||
| ("dotPow", _) =>
|
||||
Error("Dotwise exponentiation needs two operands")
|
||||
| ("rightLogShift", [|l, r|]) => toOkPointwise((`Add, l, r))
|
||||
| ("rightLogShift", _) =>
|
||||
Error("Dotwise addition needs two operands")
|
||||
| ("divide", [|l, r|]) => toOkAlgebraic((`Divide, l, r))
|
||||
| ("divide", _) => Error("Division needs two operands")
|
||||
| ("leftTruncate", [|d, `SymbolicDist(`Float(lc))|]) =>
|
||||
toOkTruncate((Some(lc), None, d))
|
||||
| ("leftTruncate", _) =>
|
||||
Error(
|
||||
"leftTruncate needs two arguments: the expression and the cutoff",
|
||||
)
|
||||
| ("rightTruncate", [|d, `SymbolicDist(`Float(rc))|]) =>
|
||||
toOkTruncate((None, Some(rc), d))
|
||||
| ("rightTruncate", _) =>
|
||||
Error(
|
||||
"rightTruncate needs two arguments: the expression and the cutoff",
|
||||
)
|
||||
| (
|
||||
"truncate",
|
||||
[|d, `SymbolicDist(`Float(lc)), `SymbolicDist(`Float(rc))|],
|
||||
) =>
|
||||
toOkTruncate((Some(lc), Some(rc), d))
|
||||
| ("truncate", _) =>
|
||||
Error(
|
||||
"truncate needs three arguments: the expression and both cutoffs",
|
||||
)
|
||||
| _ => Error("This type not currently supported")
|
||||
}
|
||||
});
|
||||
};
|
||||
|
||||
let functionParser =
|
||||
(
|
||||
nodeParser:
|
||||
MathJsonToMathJsAdt.arg =>
|
||||
Belt.Result.t(
|
||||
ProbExample.ExpressionTypes.ExpressionTree.node,
|
||||
string,
|
||||
),
|
||||
name: string,
|
||||
args: array(MathJsonToMathJsAdt.arg),
|
||||
)
|
||||
: result(ExpressionTypes.ExpressionTree.node, string) => {
|
||||
let parseArray = ags =>
|
||||
ags |> E.A.fmap(nodeParser) |> E.A.R.firstErrorOrOpen;
|
||||
let parseArgs = () => parseArray(args);
|
||||
switch (name) {
|
||||
| "lognormal" => lognormal(args, parseArgs, nodeParser)
|
||||
| "multimodal"
|
||||
| "add"
|
||||
| "subtract"
|
||||
| "multiply"
|
||||
| "unaryMinus"
|
||||
| "dotMultiply"
|
||||
| "dotPow"
|
||||
| "rightLogShift"
|
||||
| "divide"
|
||||
| "pow"
|
||||
| "leftTruncate"
|
||||
| "rightTruncate"
|
||||
| "truncate" => operationParser(name, parseArgs())
|
||||
| "mm" =>
|
||||
let weights =
|
||||
args
|
||||
|> E.A.last
|
||||
|> E.O.bind(
|
||||
_,
|
||||
fun
|
||||
| Array(values) => Some(parseArray(values))
|
||||
| _ => None,
|
||||
);
|
||||
let possibleDists =
|
||||
E.O.isSome(weights)
|
||||
? Belt.Array.slice(args, ~offset=0, ~len=E.A.length(args) - 1)
|
||||
: args;
|
||||
let dists = parseArray(possibleDists);
|
||||
switch (weights, dists) {
|
||||
| (Some(Error(r)), _) => Error(r)
|
||||
| (_, Error(r)) => Error(r)
|
||||
| (None, Ok(dists)) =>
|
||||
let hash: ExpressionTypes.ExpressionTree.node =
|
||||
`FunctionCall(("multimodal", [|`Hash(
|
||||
[|
|
||||
("dists", `Array(dists)),
|
||||
("weights", `Array([||]))
|
||||
|]
|
||||
)|]));
|
||||
Ok(hash);
|
||||
| (Some(Ok(weights)), Ok(dists)) =>
|
||||
let hash: ExpressionTypes.ExpressionTree.node =
|
||||
`FunctionCall(("multimodal", [|`Hash(
|
||||
[|
|
||||
("dists", `Array(dists)),
|
||||
("weights", `Array(weights))
|
||||
|]
|
||||
)|]));
|
||||
Ok(hash);
|
||||
};
|
||||
| name =>
|
||||
parseArgs()
|
||||
|> E.R.fmap((args: array(ExpressionTypes.ExpressionTree.node)) =>
|
||||
`FunctionCall((name, args))
|
||||
)
|
||||
};
|
||||
};
|
||||
|
||||
let rec nodeParser:
|
||||
MathJsonToMathJsAdt.arg =>
|
||||
result(ExpressionTypes.ExpressionTree.node, string) =
|
||||
fun
|
||||
| Value(f) => Ok(`SymbolicDist(`Float(f)))
|
||||
| Symbol(sym) => Ok(`Symbol(sym))
|
||||
| Fn({name, args}) => functionParser(nodeParser, name, args)
|
||||
| _ => {
|
||||
Error("This type not currently supported");
|
||||
};
|
||||
|
||||
// | FunctionAssignment({name, args, expression}) => {
|
||||
// let evaluatedExpression = run(expression);
|
||||
// `Function(_ => Ok(evaluatedExpression));
|
||||
// }
|
||||
let rec topLevel = (r): result(ExpressionTypes.Program.program, string) =>
|
||||
switch (r) {
|
||||
| FunctionAssignment({name, args, expression}) =>
|
||||
switch (nodeParser(expression)) {
|
||||
| Ok(r) => Ok([|`Assignment((name, `Function((args, r))))|])
|
||||
| Error(r) => Error(r)
|
||||
}
|
||||
| Value(_) as r => nodeParser(r) |> E.R.fmap(r => [|`Expression(r)|])
|
||||
| Fn(_) as r => nodeParser(r) |> E.R.fmap(r => [|`Expression(r)|])
|
||||
| Array(_) => Error("Array not valid as top level")
|
||||
| Symbol(s) => handleSymbol(s) |> E.R.fmap(r => [|`Expression(r)|])
|
||||
| Object(_) => Error("Object not valid as top level")
|
||||
| Assignment(name, value) =>
|
||||
switch (name) {
|
||||
| Symbol(symbol) =>
|
||||
nodeParser(value) |> E.R.fmap(r => [|`Assignment((symbol, r))|])
|
||||
| _ => Error("Symbol not a string")
|
||||
}
|
||||
| Blocks(blocks) =>
|
||||
blocks
|
||||
|> E.A.fmap(b => topLevel(b))
|
||||
|> E.A.R.firstErrorOrOpen
|
||||
|> E.R.fmap(E.A.concatMany)
|
||||
};
|
||||
|
||||
let run = (r): result(ExpressionTypes.Program.program, string) =>
|
||||
r |> MathAdtCleaner.run |> topLevel;
|
||||
};
|
||||
|
||||
/* The MathJs parser doesn't support '.+' syntax, but we want it because it
|
||||
would make sense with '.*'. Our workaround is to change this to >>>, which is
|
||||
logShift in mathJS. We don't expect to use logShift anytime soon, so this tradeoff
|
||||
seems fine.
|
||||
*/
|
||||
let pointwiseToRightLogShift = Js.String.replaceByRe([%re "/\.\+/g"], ">>>");
|
||||
|
||||
let fromString2 = str => {
|
||||
/* We feed the user-typed string into Mathjs.parseMath,
|
||||
which returns a JSON with (hopefully) a single-element array.
|
||||
This array element is the top-level node of a nested-object tree
|
||||
representing the functions/arguments/values/etc. in the string.
|
||||
|
||||
The function MathJsonToMathJsAdt then recursively unpacks this JSON into a typed data structure we can use.
|
||||
Inside of this function, MathAdtToDistDst is called whenever a distribution function is encountered.
|
||||
*/
|
||||
let mathJsToJson = str |> pointwiseToRightLogShift |> Mathjs.parseMath;
|
||||
|
||||
let mathJsParse =
|
||||
E.R.bind(mathJsToJson, r => {
|
||||
switch (MathJsonToMathJsAdt.run(r)) {
|
||||
| Some(r) => Ok(r)
|
||||
| None => Error("MathJsParse Error")
|
||||
}
|
||||
});
|
||||
|
||||
let value = E.R.bind(mathJsParse, MathAdtToDistDst.run);
|
||||
Js.log2(mathJsParse, value);
|
||||
value;
|
||||
};
|
||||
|
||||
let fromString = str => {
|
||||
fromString2(str);
|
||||
};
|
|
@ -1,10 +0,0 @@
|
|||
[@bs.module "./MathjsWrapper.js"]
|
||||
external parseMathExt: string => Js.Json.t = "parseMath";
|
||||
|
||||
let parseMath = (str: string): result(Js.Json.t, string) =>
|
||||
switch (parseMathExt(str)) {
|
||||
| exception (Js.Exn.Error(err)) =>
|
||||
Error(Js.Exn.message(err) |> E.O.default("MathJS Parse Error"))
|
||||
| exception _ => Error("MathJS Parse Error")
|
||||
| j => Ok(j)
|
||||
};
|
|
@ -1,9 +0,0 @@
|
|||
const math = require("mathjs");
|
||||
|
||||
function parseMath(f) {
|
||||
return JSON.parse(JSON.stringify(math.parse(f)))
|
||||
};
|
||||
|
||||
module.exports = {
|
||||
parseMath,
|
||||
};
|
|
@ -1,105 +0,0 @@
|
|||
open ExpressionTypes;
|
||||
|
||||
module Algebraic = {
|
||||
type t = algebraicOperation;
|
||||
let toFn: (t, float, float) => float =
|
||||
fun
|
||||
| `Add => (+.)
|
||||
| `Subtract => (-.)
|
||||
| `Multiply => ( *. )
|
||||
| `Exponentiate => ( ** )
|
||||
| `Divide => (/.);
|
||||
|
||||
let applyFn = (t, f1, f2) => {
|
||||
switch (t, f1, f2) {
|
||||
| (`Divide, _, 0.) => Error("Cannot divide $v1 by zero.")
|
||||
| _ => Ok(toFn(t, f1, f2))
|
||||
};
|
||||
};
|
||||
|
||||
let toString =
|
||||
fun
|
||||
| `Add => "+"
|
||||
| `Subtract => "-"
|
||||
| `Multiply => "*"
|
||||
| `Exponentiate => ( "**" )
|
||||
| `Divide => "/";
|
||||
|
||||
let format = (a, b, c) => b ++ " " ++ toString(a) ++ " " ++ c;
|
||||
};
|
||||
|
||||
module Pointwise = {
|
||||
type t = pointwiseOperation;
|
||||
let toString =
|
||||
fun
|
||||
| `Add => "+"
|
||||
| `Exponentiate => "^"
|
||||
| `Multiply => "*";
|
||||
|
||||
let format = (a, b, c) => b ++ " " ++ toString(a) ++ " " ++ c;
|
||||
};
|
||||
|
||||
module DistToFloat = {
|
||||
type t = distToFloatOperation;
|
||||
|
||||
let format = (operation, value) =>
|
||||
switch (operation) {
|
||||
| `Cdf(f) => {j|cdf(x=$f,$value)|j}
|
||||
| `Pdf(f) => {j|pdf(x=$f,$value)|j}
|
||||
| `Inv(f) => {j|inv(x=$f,$value)|j}
|
||||
| `Sample => "sample($value)"
|
||||
| `Mean => "mean($value)"
|
||||
};
|
||||
};
|
||||
|
||||
// Note that different logarithms don't really do anything.
|
||||
module Scale = {
|
||||
type t = scaleOperation;
|
||||
let toFn =
|
||||
fun
|
||||
| `Multiply => ( *. )
|
||||
| `Exponentiate => ( ** )
|
||||
| `Log => ((a, b) => log(a) /. log(b));
|
||||
|
||||
let format = (operation: t, value, scaleBy) =>
|
||||
switch (operation) {
|
||||
| `Multiply => {j|verticalMultiply($value, $scaleBy) |j}
|
||||
| `Exponentiate => {j|verticalExponentiate($value, $scaleBy) |j}
|
||||
| `Log => {j|verticalLog($value, $scaleBy) |j}
|
||||
};
|
||||
|
||||
let toIntegralSumCacheFn =
|
||||
fun
|
||||
| `Multiply => ((a, b) => Some(a *. b))
|
||||
| `Exponentiate => ((_, _) => None)
|
||||
| `Log => ((_, _) => None);
|
||||
|
||||
let toIntegralCacheFn =
|
||||
fun
|
||||
| `Multiply => ((a, b) => None) // TODO: this could probably just be multiplied out (using Continuous.scaleBy)
|
||||
| `Exponentiate => ((_, _) => None)
|
||||
| `Log => ((_, _) => None);
|
||||
};
|
||||
|
||||
module T = {
|
||||
let truncateToString =
|
||||
(left: option(float), right: option(float), nodeToString) => {
|
||||
let left = left |> E.O.dimap(Js.Float.toString, () => "-inf");
|
||||
let right = right |> E.O.dimap(Js.Float.toString, () => "inf");
|
||||
{j|truncate($nodeToString, $left, $right)|j};
|
||||
};
|
||||
let toString = nodeToString =>
|
||||
fun
|
||||
| `AlgebraicCombination(op, t1, t2) =>
|
||||
Algebraic.format(op, nodeToString(t1), nodeToString(t2))
|
||||
| `PointwiseCombination(op, t1, t2) =>
|
||||
Pointwise.format(op, nodeToString(t1), nodeToString(t2))
|
||||
| `VerticalScaling(scaleOp, t, scaleBy) =>
|
||||
Scale.format(scaleOp, nodeToString(t), nodeToString(scaleBy))
|
||||
| `Normalize(t) => "normalize(k" ++ nodeToString(t) ++ ")"
|
||||
| `FloatFromDist(floatFromDistOp, t) =>
|
||||
DistToFloat.format(floatFromDistOp, nodeToString(t))
|
||||
| `Truncate(lc, rc, t) => truncateToString(lc, rc, nodeToString(t))
|
||||
| `Render(t) => nodeToString(t)
|
||||
| _ => ""; // SymbolicDist and RenderedDist are handled in ExpressionTree.toString.
|
||||
};
|
|
@ -1,143 +0,0 @@
|
|||
open ExpressionTypes.ExpressionTree;
|
||||
|
||||
module Function = {
|
||||
type t = (array(string), node);
|
||||
let fromNode: node => option(t) =
|
||||
node =>
|
||||
switch (node) {
|
||||
| `Function(r) => Some(r)
|
||||
| _ => None
|
||||
};
|
||||
let argumentNames = ((a, _): t) => a;
|
||||
let internals = ((_, b): t) => b;
|
||||
let run =
|
||||
(
|
||||
evaluationParams: ExpressionTypes.ExpressionTree.evaluationParams,
|
||||
args: array(node),
|
||||
t: t,
|
||||
) =>
|
||||
if (E.A.length(args) == E.A.length(argumentNames(t))) {
|
||||
let newEnvironment =
|
||||
Belt.Array.zip(argumentNames(t), args)
|
||||
|> ExpressionTypes.ExpressionTree.Environment.fromArray;
|
||||
let newEvaluationParams: ExpressionTypes.ExpressionTree.evaluationParams = {
|
||||
samplingInputs: evaluationParams.samplingInputs,
|
||||
environment:
|
||||
ExpressionTypes.ExpressionTree.Environment.mergeKeepSecond(
|
||||
evaluationParams.environment,
|
||||
newEnvironment,
|
||||
),
|
||||
evaluateNode: evaluationParams.evaluateNode,
|
||||
};
|
||||
evaluationParams.evaluateNode(newEvaluationParams, internals(t));
|
||||
} else {
|
||||
Error("Wrong number of variables");
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
module Primative = {
|
||||
type t = [
|
||||
| `SymbolicDist(SymbolicTypes.symbolicDist)
|
||||
| `RenderedDist(DistTypes.shape)
|
||||
| `Function(array(string), node)
|
||||
];
|
||||
|
||||
let isPrimative: node => bool =
|
||||
fun
|
||||
| `SymbolicDist(_)
|
||||
| `RenderedDist(_)
|
||||
| `Function(_) => true
|
||||
| _ => false;
|
||||
|
||||
let fromNode: node => option(t) =
|
||||
fun
|
||||
| `SymbolicDist(_) as n
|
||||
| `RenderedDist(_) as n
|
||||
| `Function(_) as n => Some(n)
|
||||
| _ => None;
|
||||
};
|
||||
|
||||
module SamplingDistribution = {
|
||||
type t = [
|
||||
| `SymbolicDist(SymbolicTypes.symbolicDist)
|
||||
| `RenderedDist(DistTypes.shape)
|
||||
];
|
||||
|
||||
let isSamplingDistribution: node => bool =
|
||||
fun
|
||||
| `SymbolicDist(_) => true
|
||||
| `RenderedDist(_) => true
|
||||
| _ => false;
|
||||
|
||||
let fromNode: node => result(t, string) =
|
||||
fun
|
||||
| `SymbolicDist(n) => Ok(`SymbolicDist(n))
|
||||
| `RenderedDist(n) => Ok(`RenderedDist(n))
|
||||
| _ => Error("Not valid type");
|
||||
|
||||
let renderIfIsNotSamplingDistribution = (params, t): result(node, string) =>
|
||||
!isSamplingDistribution(t)
|
||||
? switch (Render.render(params, t)) {
|
||||
| Ok(r) => Ok(r)
|
||||
| Error(e) => Error(e)
|
||||
}
|
||||
: Ok(t);
|
||||
|
||||
let map = (~renderedDistFn, ~symbolicDistFn, node: node) =>
|
||||
node
|
||||
|> (
|
||||
fun
|
||||
| `RenderedDist(r) => Some(renderedDistFn(r))
|
||||
| `SymbolicDist(s) => Some(symbolicDistFn(s))
|
||||
| _ => None
|
||||
);
|
||||
|
||||
let sampleN = n =>
|
||||
map(
|
||||
~renderedDistFn=Shape.sampleNRendered(n),
|
||||
~symbolicDistFn=SymbolicDist.T.sampleN(n),
|
||||
);
|
||||
|
||||
let getCombinationSamples = (n, algebraicOp, t1: node, t2: node) => {
|
||||
switch (sampleN(n, t1), sampleN(n, t2)) {
|
||||
| (Some(a), Some(b)) =>
|
||||
Some(
|
||||
Belt.Array.zip(a, b)
|
||||
|> E.A.fmap(((a, b)) => Operation.Algebraic.toFn(algebraicOp, a, b)),
|
||||
)
|
||||
| _ => None
|
||||
};
|
||||
};
|
||||
|
||||
let combineShapesUsingSampling =
|
||||
(evaluationParams: evaluationParams, algebraicOp, t1: node, t2: node) => {
|
||||
let i1 = renderIfIsNotSamplingDistribution(evaluationParams, t1);
|
||||
let i2 = renderIfIsNotSamplingDistribution(evaluationParams, t2);
|
||||
E.R.merge(i1, i2)
|
||||
|> E.R.bind(
|
||||
_,
|
||||
((a, b)) => {
|
||||
let samples =
|
||||
getCombinationSamples(
|
||||
evaluationParams.samplingInputs.sampleCount,
|
||||
algebraicOp,
|
||||
a,
|
||||
b,
|
||||
);
|
||||
|
||||
// todo: This bottom part should probably be somewhere else.
|
||||
let shape =
|
||||
samples
|
||||
|> E.O.fmap(
|
||||
SamplesToShape.fromSamples(
|
||||
~samplingInputs=evaluationParams.samplingInputs,
|
||||
),
|
||||
)
|
||||
|> E.O.bind(_, r => r.shape)
|
||||
|> E.O.toResult("No response");
|
||||
shape |> E.R.fmap(r => `Normalize(`RenderedDist(r)));
|
||||
},
|
||||
);
|
||||
};
|
||||
};
|
|
@ -1,5 +0,0 @@
|
|||
type t = ExpressionTypes.Program.program;
|
||||
|
||||
let last = (r:t) => E.A.last(r) |> E.O.toResult("No rendered lines");
|
||||
// let run = (p:program) => p |> E.A.last |> E.O.fmap(r =>
|
||||
// )
|
|
@ -1,30 +0,0 @@
|
|||
//The math here was taken from https://github.com/jasondavies/science.js/blob/master/src/stats/bandwidth.js
|
||||
|
||||
let len = x => E.A.length(x) |> float_of_int;
|
||||
|
||||
let iqr = x => {
|
||||
Jstat.percentile(x, 0.75, true) -. Jstat.percentile(x, 0.25, true);
|
||||
};
|
||||
|
||||
// Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.
|
||||
let nrd0 = x => {
|
||||
let hi = Js_math.sqrt(Jstat.variance(x));
|
||||
let lo = Js_math.minMany_float([|hi, iqr(x) /. 1.34|]);
|
||||
let e = Js_math.abs_float(x[1]);
|
||||
let lo' =
|
||||
switch (lo, hi, e) {
|
||||
| (lo, _, _) when !Js.Float.isNaN(lo) => lo
|
||||
| (_, hi, _) when !Js.Float.isNaN(hi) => hi
|
||||
| (_, _, e) when !Js.Float.isNaN(e) => e
|
||||
| _ => 1.0
|
||||
};
|
||||
0.9 *. lo' *. Js.Math.pow_float(~base=len(x), ~exp=-0.2);
|
||||
};
|
||||
|
||||
// Scott, D. W. (1992) Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley.
|
||||
let nrd = x => {
|
||||
let h = iqr(x) /. 1.34;
|
||||
1.06
|
||||
*. Js.Math.min_float(Js.Math.sqrt(Jstat.variance(x)), h)
|
||||
*. Js.Math.pow_float(~base=len(x), ~exp=(-1.0) /. 5.0);
|
||||
};
|
|
@ -1,21 +0,0 @@
|
|||
const pdfast = require('pdfast');
|
||||
const _ = require("lodash");
|
||||
|
||||
const samplesToContinuousPdf = (
|
||||
samples,
|
||||
size,
|
||||
width,
|
||||
min = false,
|
||||
max = false,
|
||||
) => {
|
||||
let _samples = _.filter(samples, _.isFinite);
|
||||
if (_.isFinite(min)) { _samples = _.filter(_samples, r => r > min) };
|
||||
if (_.isFinite(max)) { _samples = _.filter(_samples, r => r < max) };
|
||||
let pdf = pdfast.create(_samples, { size, width });
|
||||
return {xs: pdf.map(r => r.x), ys: pdf.map(r => r.y)};
|
||||
};
|
||||
|
||||
|
||||
module.exports = {
|
||||
samplesToContinuousPdf,
|
||||
};
|
|
@ -1,164 +0,0 @@
|
|||
module Internals = {
|
||||
module Types = {
|
||||
type samplingStats = {
|
||||
sampleCount: int,
|
||||
outputXYPoints: int,
|
||||
bandwidthXSuggested: float,
|
||||
bandwidthUnitSuggested: float,
|
||||
bandwidthXImplemented: float,
|
||||
bandwidthUnitImplemented: float,
|
||||
};
|
||||
|
||||
type outputs = {
|
||||
continuousParseParams: option(samplingStats),
|
||||
shape: option(DistTypes.shape),
|
||||
};
|
||||
};
|
||||
|
||||
module JS = {
|
||||
[@bs.deriving abstract]
|
||||
type distJs = {
|
||||
xs: array(float),
|
||||
ys: array(float),
|
||||
};
|
||||
|
||||
let jsToDist = (d: distJs): DistTypes.xyShape => {
|
||||
xs: xsGet(d),
|
||||
ys: ysGet(d),
|
||||
};
|
||||
|
||||
[@bs.module "./KdeLibrary.js"]
|
||||
external samplesToContinuousPdf: (array(float), int, int) => distJs =
|
||||
"samplesToContinuousPdf";
|
||||
};
|
||||
|
||||
module KDE = {
|
||||
let normalSampling = (samples, outputXYPoints, kernelWidth) => {
|
||||
samples
|
||||
|> JS.samplesToContinuousPdf(_, outputXYPoints, kernelWidth)
|
||||
|> JS.jsToDist;
|
||||
};
|
||||
};
|
||||
|
||||
module T = {
|
||||
type t = array(float);
|
||||
|
||||
let splitContinuousAndDiscrete = (sortedArray: t) => {
|
||||
let continuous = [||];
|
||||
let discrete = E.FloatFloatMap.empty();
|
||||
Belt.Array.forEachWithIndex(
|
||||
sortedArray,
|
||||
(index, element) => {
|
||||
let maxIndex = (sortedArray |> Array.length) - 1;
|
||||
let possiblySimilarElements =
|
||||
(
|
||||
switch (index) {
|
||||
| 0 => [|index + 1|]
|
||||
| n when n == maxIndex => [|index - 1|]
|
||||
| _ => [|index - 1, index + 1|]
|
||||
}
|
||||
)
|
||||
|> Belt.Array.map(_, r => sortedArray[r]);
|
||||
let hasSimilarElement =
|
||||
Belt.Array.some(possiblySimilarElements, r => r == element);
|
||||
hasSimilarElement
|
||||
? E.FloatFloatMap.increment(element, discrete)
|
||||
: {
|
||||
let _ = Js.Array.push(element, continuous);
|
||||
();
|
||||
};
|
||||
();
|
||||
},
|
||||
);
|
||||
(continuous, discrete);
|
||||
};
|
||||
|
||||
let xWidthToUnitWidth = (samples, outputXYPoints, xWidth) => {
|
||||
let xyPointRange = E.A.Sorted.range(samples) |> E.O.default(0.0);
|
||||
let xyPointWidth = xyPointRange /. float_of_int(outputXYPoints);
|
||||
xWidth /. xyPointWidth;
|
||||
};
|
||||
|
||||
let formatUnitWidth = w => Jstat.max([|w, 1.0|]) |> int_of_float;
|
||||
|
||||
let suggestedUnitWidth = (samples, outputXYPoints) => {
|
||||
let suggestedXWidth = Bandwidth.nrd0(samples);
|
||||
xWidthToUnitWidth(samples, outputXYPoints, suggestedXWidth);
|
||||
};
|
||||
|
||||
let kde = (~samples, ~outputXYPoints, width) => {
|
||||
KDE.normalSampling(samples, outputXYPoints, width);
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
let toShape =
|
||||
(
|
||||
~samples: Internals.T.t,
|
||||
~samplingInputs: ExpressionTypes.ExpressionTree.samplingInputs,
|
||||
(),
|
||||
) => {
|
||||
Array.fast_sort(compare, samples);
|
||||
let (continuousPart, discretePart) = E.A.Sorted.Floats.split(samples);
|
||||
let length = samples |> E.A.length |> float_of_int;
|
||||
let discrete: DistTypes.discreteShape =
|
||||
discretePart
|
||||
|> E.FloatFloatMap.fmap(r => r /. length)
|
||||
|> E.FloatFloatMap.toArray
|
||||
|> XYShape.T.fromZippedArray
|
||||
|> Discrete.make;
|
||||
|
||||
let pdf =
|
||||
continuousPart |> E.A.length > 5
|
||||
? {
|
||||
let _suggestedXWidth = Bandwidth.nrd0(continuousPart);
|
||||
// todo: This does some recalculating from the last step.
|
||||
let _suggestedUnitWidth =
|
||||
Internals.T.suggestedUnitWidth(
|
||||
continuousPart,
|
||||
samplingInputs.outputXYPoints,
|
||||
);
|
||||
let usedWidth =
|
||||
samplingInputs.kernelWidth |> E.O.default(_suggestedXWidth);
|
||||
let usedUnitWidth =
|
||||
Internals.T.xWidthToUnitWidth(
|
||||
samples,
|
||||
samplingInputs.outputXYPoints,
|
||||
usedWidth,
|
||||
);
|
||||
let samplingStats: Internals.Types.samplingStats = {
|
||||
sampleCount: samplingInputs.sampleCount,
|
||||
outputXYPoints: samplingInputs.outputXYPoints,
|
||||
bandwidthXSuggested: _suggestedXWidth,
|
||||
bandwidthUnitSuggested: _suggestedUnitWidth,
|
||||
bandwidthXImplemented: usedWidth,
|
||||
bandwidthUnitImplemented: usedUnitWidth,
|
||||
};
|
||||
continuousPart
|
||||
|> Internals.T.kde(
|
||||
~samples=_,
|
||||
~outputXYPoints=samplingInputs.outputXYPoints,
|
||||
Internals.T.formatUnitWidth(usedUnitWidth),
|
||||
)
|
||||
|> Continuous.make
|
||||
|> (r => Some((r, samplingStats)));
|
||||
}
|
||||
: None;
|
||||
|
||||
let shape =
|
||||
MixedShapeBuilder.buildSimple(
|
||||
~continuous=pdf |> E.O.fmap(fst),
|
||||
~discrete=Some(discrete),
|
||||
);
|
||||
|
||||
let samplesParse: Internals.Types.outputs = {
|
||||
continuousParseParams: pdf |> E.O.fmap(snd),
|
||||
shape,
|
||||
};
|
||||
|
||||
samplesParse;
|
||||
};
|
||||
|
||||
let fromSamples = (~samplingInputs, samples) => {
|
||||
toShape(~samples, ~samplingInputs, ());
|
||||
};
|
|
@ -1,346 +0,0 @@
|
|||
open SymbolicTypes;
|
||||
|
||||
module Exponential = {
|
||||
type t = exponential;
|
||||
let make = (rate:float): symbolicDist =>
|
||||
`Exponential(
|
||||
{
|
||||
rate:rate
|
||||
},
|
||||
);
|
||||
let pdf = (x, t: t) => Jstat.exponential##pdf(x, t.rate);
|
||||
let cdf = (x, t: t) => Jstat.exponential##cdf(x, t.rate);
|
||||
let inv = (p, t: t) => Jstat.exponential##inv(p, t.rate);
|
||||
let sample = (t: t) => Jstat.exponential##sample(t.rate);
|
||||
let mean = (t: t) => Ok(Jstat.exponential##mean(t.rate));
|
||||
let toString = ({rate}: t) => {j|Exponential($rate)|j};
|
||||
};
|
||||
|
||||
module Cauchy = {
|
||||
type t = cauchy;
|
||||
let make = (local, scale): symbolicDist => `Cauchy({local, scale});
|
||||
let pdf = (x, t: t) => Jstat.cauchy##pdf(x, t.local, t.scale);
|
||||
let cdf = (x, t: t) => Jstat.cauchy##cdf(x, t.local, t.scale);
|
||||
let inv = (p, t: t) => Jstat.cauchy##inv(p, t.local, t.scale);
|
||||
let sample = (t: t) => Jstat.cauchy##sample(t.local, t.scale);
|
||||
let mean = (_: t) => Error("Cauchy distributions have no mean value.");
|
||||
let toString = ({local, scale}: t) => {j|Cauchy($local, $scale)|j};
|
||||
};
|
||||
|
||||
module Triangular = {
|
||||
type t = triangular;
|
||||
let make = (low, medium, high): result(symbolicDist, string) =>
|
||||
low < medium && medium < high
|
||||
? Ok(`Triangular({low, medium, high}))
|
||||
: Error("Triangular values must be increasing order");
|
||||
let pdf = (x, t: t) => Jstat.triangular##pdf(x, t.low, t.high, t.medium);
|
||||
let cdf = (x, t: t) => Jstat.triangular##cdf(x, t.low, t.high, t.medium);
|
||||
let inv = (p, t: t) => Jstat.triangular##inv(p, t.low, t.high, t.medium);
|
||||
let sample = (t: t) => Jstat.triangular##sample(t.low, t.high, t.medium);
|
||||
let mean = (t: t) => Ok(Jstat.triangular##mean(t.low, t.high, t.medium));
|
||||
let toString = ({low, medium, high}: t) => {j|Triangular($low, $medium, $high)|j};
|
||||
};
|
||||
|
||||
module Normal = {
|
||||
type t = normal;
|
||||
let make = (mean, stdev): symbolicDist => `Normal({mean, stdev});
|
||||
let pdf = (x, t: t) => Jstat.normal##pdf(x, t.mean, t.stdev);
|
||||
let cdf = (x, t: t) => Jstat.normal##cdf(x, t.mean, t.stdev);
|
||||
|
||||
let from90PercentCI = (low, high) => {
|
||||
let mean = E.A.Floats.mean([|low, high|]);
|
||||
let stdev = (high -. low) /. (2. *. 1.644854);
|
||||
`Normal({mean, stdev});
|
||||
};
|
||||
let inv = (p, t: t) => Jstat.normal##inv(p, t.mean, t.stdev);
|
||||
let sample = (t: t) => Jstat.normal##sample(t.mean, t.stdev);
|
||||
let mean = (t: t) => Ok(Jstat.normal##mean(t.mean, t.stdev));
|
||||
let toString = ({mean, stdev}: t) => {j|Normal($mean,$stdev)|j};
|
||||
|
||||
let add = (n1: t, n2: t) => {
|
||||
let mean = n1.mean +. n2.mean;
|
||||
let stdev = sqrt(n1.stdev ** 2. +. n2.stdev ** 2.);
|
||||
`Normal({mean, stdev});
|
||||
};
|
||||
let subtract = (n1: t, n2: t) => {
|
||||
let mean = n1.mean -. n2.mean;
|
||||
let stdev = sqrt(n1.stdev ** 2. +. n2.stdev ** 2.);
|
||||
`Normal({mean, stdev});
|
||||
};
|
||||
|
||||
// TODO: is this useful here at all? would need the integral as well ...
|
||||
let pointwiseProduct = (n1: t, n2: t) => {
|
||||
let mean =
|
||||
(n1.mean *. n2.stdev ** 2. +. n2.mean *. n1.stdev ** 2.)
|
||||
/. (n1.stdev ** 2. +. n2.stdev ** 2.);
|
||||
let stdev = 1. /. (1. /. n1.stdev ** 2. +. 1. /. n2.stdev ** 2.);
|
||||
`Normal({mean, stdev});
|
||||
};
|
||||
|
||||
let operate = (operation: Operation.Algebraic.t, n1: t, n2: t) =>
|
||||
switch (operation) {
|
||||
| `Add => Some(add(n1, n2))
|
||||
| `Subtract => Some(subtract(n1, n2))
|
||||
| _ => None
|
||||
};
|
||||
};
|
||||
|
||||
module Beta = {
|
||||
type t = beta;
|
||||
let make = (alpha, beta) => `Beta({alpha, beta});
|
||||
let pdf = (x, t: t) => Jstat.beta##pdf(x, t.alpha, t.beta);
|
||||
let cdf = (x, t: t) => Jstat.beta##cdf(x, t.alpha, t.beta);
|
||||
let inv = (p, t: t) => Jstat.beta##inv(p, t.alpha, t.beta);
|
||||
let sample = (t: t) => Jstat.beta##sample(t.alpha, t.beta);
|
||||
let mean = (t: t) => Ok(Jstat.beta##mean(t.alpha, t.beta));
|
||||
let toString = ({alpha, beta}: t) => {j|Beta($alpha,$beta)|j};
|
||||
};
|
||||
|
||||
module Lognormal = {
|
||||
type t = lognormal;
|
||||
let make = (mu, sigma) => `Lognormal({mu, sigma});
|
||||
let pdf = (x, t: t) => Jstat.lognormal##pdf(x, t.mu, t.sigma);
|
||||
let cdf = (x, t: t) => Jstat.lognormal##cdf(x, t.mu, t.sigma);
|
||||
let inv = (p, t: t) => Jstat.lognormal##inv(p, t.mu, t.sigma);
|
||||
let mean = (t: t) => Ok(Jstat.lognormal##mean(t.mu, t.sigma));
|
||||
let sample = (t: t) => Jstat.lognormal##sample(t.mu, t.sigma);
|
||||
let toString = ({mu, sigma}: t) => {j|Lognormal($mu,$sigma)|j};
|
||||
let from90PercentCI = (low, high) => {
|
||||
let logLow = Js.Math.log(low);
|
||||
let logHigh = Js.Math.log(high);
|
||||
let mu = E.A.Floats.mean([|logLow, logHigh|]);
|
||||
let sigma = (logHigh -. logLow) /. (2.0 *. 1.645);
|
||||
`Lognormal({mu, sigma});
|
||||
};
|
||||
let fromMeanAndStdev = (mean, stdev) => {
|
||||
let variance = Js.Math.pow_float(~base=stdev, ~exp=2.0);
|
||||
let meanSquared = Js.Math.pow_float(~base=mean, ~exp=2.0);
|
||||
let mu =
|
||||
Js.Math.log(mean) -. 0.5 *. Js.Math.log(variance /. meanSquared +. 1.0);
|
||||
let sigma =
|
||||
Js.Math.pow_float(
|
||||
~base=Js.Math.log(variance /. meanSquared +. 1.0),
|
||||
~exp=0.5,
|
||||
);
|
||||
`Lognormal({mu, sigma});
|
||||
};
|
||||
|
||||
let multiply = (l1, l2) => {
|
||||
let mu = l1.mu +. l2.mu;
|
||||
let sigma = l1.sigma +. l2.sigma;
|
||||
`Lognormal({mu, sigma});
|
||||
};
|
||||
let divide = (l1, l2) => {
|
||||
let mu = l1.mu -. l2.mu;
|
||||
let sigma = l1.sigma +. l2.sigma;
|
||||
`Lognormal({mu, sigma});
|
||||
};
|
||||
let operate = (operation: Operation.Algebraic.t, n1: t, n2: t) =>
|
||||
switch (operation) {
|
||||
| `Multiply => Some(multiply(n1, n2))
|
||||
| `Divide => Some(divide(n1, n2))
|
||||
| _ => None
|
||||
};
|
||||
};
|
||||
|
||||
module Uniform = {
|
||||
type t = uniform;
|
||||
let make = (low, high) => `Uniform({low, high});
|
||||
let pdf = (x, t: t) => Jstat.uniform##pdf(x, t.low, t.high);
|
||||
let cdf = (x, t: t) => Jstat.uniform##cdf(x, t.low, t.high);
|
||||
let inv = (p, t: t) => Jstat.uniform##inv(p, t.low, t.high);
|
||||
let sample = (t: t) => Jstat.uniform##sample(t.low, t.high);
|
||||
let mean = (t: t) => Ok(Jstat.uniform##mean(t.low, t.high));
|
||||
let toString = ({low, high}: t) => {j|Uniform($low,$high)|j};
|
||||
let truncate = (low, high, t: t): t => {
|
||||
let newLow = max(E.O.default(neg_infinity, low), t.low);
|
||||
let newHigh = min(E.O.default(infinity, high), t.high);
|
||||
{low: newLow, high: newHigh};
|
||||
};
|
||||
};
|
||||
|
||||
module Float = {
|
||||
type t = float;
|
||||
let make = t => `Float(t);
|
||||
let pdf = (x, t: t) => x == t ? 1.0 : 0.0;
|
||||
let cdf = (x, t: t) => x >= t ? 1.0 : 0.0;
|
||||
let inv = (p, t: t) => p < t ? 0.0 : 1.0;
|
||||
let mean = (t: t) => Ok(t);
|
||||
let sample = (t: t) => t;
|
||||
let toString = Js.Float.toString;
|
||||
};
|
||||
|
||||
module T = {
|
||||
let minCdfValue = 0.0001;
|
||||
let maxCdfValue = 0.9999;
|
||||
|
||||
let pdf = (x, dist) =>
|
||||
switch (dist) {
|
||||
| `Normal(n) => Normal.pdf(x, n)
|
||||
| `Triangular(n) => Triangular.pdf(x, n)
|
||||
| `Exponential(n) => Exponential.pdf(x, n)
|
||||
| `Cauchy(n) => Cauchy.pdf(x, n)
|
||||
| `Lognormal(n) => Lognormal.pdf(x, n)
|
||||
| `Uniform(n) => Uniform.pdf(x, n)
|
||||
| `Beta(n) => Beta.pdf(x, n)
|
||||
| `Float(n) => Float.pdf(x, n)
|
||||
};
|
||||
|
||||
let cdf = (x, dist) =>
|
||||
switch (dist) {
|
||||
| `Normal(n) => Normal.cdf(x, n)
|
||||
| `Triangular(n) => Triangular.cdf(x, n)
|
||||
| `Exponential(n) => Exponential.cdf(x, n)
|
||||
| `Cauchy(n) => Cauchy.cdf(x, n)
|
||||
| `Lognormal(n) => Lognormal.cdf(x, n)
|
||||
| `Uniform(n) => Uniform.cdf(x, n)
|
||||
| `Beta(n) => Beta.cdf(x, n)
|
||||
| `Float(n) => Float.cdf(x, n)
|
||||
};
|
||||
|
||||
let inv = (x, dist) =>
|
||||
switch (dist) {
|
||||
| `Normal(n) => Normal.inv(x, n)
|
||||
| `Triangular(n) => Triangular.inv(x, n)
|
||||
| `Exponential(n) => Exponential.inv(x, n)
|
||||
| `Cauchy(n) => Cauchy.inv(x, n)
|
||||
| `Lognormal(n) => Lognormal.inv(x, n)
|
||||
| `Uniform(n) => Uniform.inv(x, n)
|
||||
| `Beta(n) => Beta.inv(x, n)
|
||||
| `Float(n) => Float.inv(x, n)
|
||||
};
|
||||
|
||||
let sample: symbolicDist => float =
|
||||
fun
|
||||
| `Normal(n) => Normal.sample(n)
|
||||
| `Triangular(n) => Triangular.sample(n)
|
||||
| `Exponential(n) => Exponential.sample(n)
|
||||
| `Cauchy(n) => Cauchy.sample(n)
|
||||
| `Lognormal(n) => Lognormal.sample(n)
|
||||
| `Uniform(n) => Uniform.sample(n)
|
||||
| `Beta(n) => Beta.sample(n)
|
||||
| `Float(n) => Float.sample(n);
|
||||
|
||||
let doN = (n, fn) => {
|
||||
let items = Belt.Array.make(n, 0.0);
|
||||
for (x in 0 to n - 1) {
|
||||
let _ = Belt.Array.set(items, x, fn());
|
||||
();
|
||||
};
|
||||
items;
|
||||
};
|
||||
|
||||
let sampleN = (n, dist) => {
|
||||
doN(n, () => sample(dist));
|
||||
};
|
||||
|
||||
let toString: symbolicDist => string =
|
||||
fun
|
||||
| `Triangular(n) => Triangular.toString(n)
|
||||
| `Exponential(n) => Exponential.toString(n)
|
||||
| `Cauchy(n) => Cauchy.toString(n)
|
||||
| `Normal(n) => Normal.toString(n)
|
||||
| `Lognormal(n) => Lognormal.toString(n)
|
||||
| `Uniform(n) => Uniform.toString(n)
|
||||
| `Beta(n) => Beta.toString(n)
|
||||
| `Float(n) => Float.toString(n);
|
||||
|
||||
let min: symbolicDist => float =
|
||||
fun
|
||||
| `Triangular({low}) => low
|
||||
| `Exponential(n) => Exponential.inv(minCdfValue, n)
|
||||
| `Cauchy(n) => Cauchy.inv(minCdfValue, n)
|
||||
| `Normal(n) => Normal.inv(minCdfValue, n)
|
||||
| `Lognormal(n) => Lognormal.inv(minCdfValue, n)
|
||||
| `Uniform({low}) => low
|
||||
| `Beta(n) => Beta.inv(minCdfValue, n)
|
||||
| `Float(n) => n;
|
||||
|
||||
let max: symbolicDist => float =
|
||||
fun
|
||||
| `Triangular(n) => n.high
|
||||
| `Exponential(n) => Exponential.inv(maxCdfValue, n)
|
||||
| `Cauchy(n) => Cauchy.inv(maxCdfValue, n)
|
||||
| `Normal(n) => Normal.inv(maxCdfValue, n)
|
||||
| `Lognormal(n) => Lognormal.inv(maxCdfValue, n)
|
||||
| `Beta(n) => Beta.inv(maxCdfValue, n)
|
||||
| `Uniform({high}) => high
|
||||
| `Float(n) => n;
|
||||
|
||||
let mean: symbolicDist => result(float, string) =
|
||||
fun
|
||||
| `Triangular(n) => Triangular.mean(n)
|
||||
| `Exponential(n) => Exponential.mean(n)
|
||||
| `Cauchy(n) => Cauchy.mean(n)
|
||||
| `Normal(n) => Normal.mean(n)
|
||||
| `Lognormal(n) => Lognormal.mean(n)
|
||||
| `Beta(n) => Beta.mean(n)
|
||||
| `Uniform(n) => Uniform.mean(n)
|
||||
| `Float(n) => Float.mean(n);
|
||||
|
||||
let operate = (distToFloatOp: ExpressionTypes.distToFloatOperation, s) =>
|
||||
switch (distToFloatOp) {
|
||||
| `Cdf(f) => Ok(cdf(f, s))
|
||||
| `Pdf(f) => Ok(pdf(f, s))
|
||||
| `Inv(f) => Ok(inv(f, s))
|
||||
| `Sample => Ok(sample(s))
|
||||
| `Mean => mean(s)
|
||||
};
|
||||
|
||||
let interpolateXs =
|
||||
(~xSelection: [ | `Linear | `ByWeight]=`Linear, dist: symbolicDist, n) => {
|
||||
switch (xSelection, dist) {
|
||||
| (`Linear, _) => E.A.Floats.range(min(dist), max(dist), n)
|
||||
| (`ByWeight, `Uniform(n)) =>
|
||||
// In `ByWeight mode, uniform distributions get special treatment because we need two x's
|
||||
// on either side for proper rendering (just left and right of the discontinuities).
|
||||
let dx = 0.00001 *. (n.high -. n.low);
|
||||
[|n.low -. dx, n.low +. dx, n.high -. dx, n.high +. dx|];
|
||||
| (`ByWeight, _) =>
|
||||
let ys = E.A.Floats.range(minCdfValue, maxCdfValue, n);
|
||||
ys |> E.A.fmap(y => inv(y, dist));
|
||||
};
|
||||
};
|
||||
|
||||
/* Calling e.g. "Normal.operate" returns an optional that wraps a result.
|
||||
If the optional is None, there is no valid analytic solution. If it Some, it
|
||||
can still return an error if there is a serious problem,
|
||||
like in the case of a divide by 0.
|
||||
*/
|
||||
let tryAnalyticalSimplification =
|
||||
(
|
||||
d1: symbolicDist,
|
||||
d2: symbolicDist,
|
||||
op: ExpressionTypes.algebraicOperation,
|
||||
)
|
||||
: analyticalSimplificationResult =>
|
||||
switch (d1, d2) {
|
||||
| (`Float(v1), `Float(v2)) =>
|
||||
switch (Operation.Algebraic.applyFn(op, v1, v2)) {
|
||||
| Ok(r) => `AnalyticalSolution(`Float(r))
|
||||
| Error(n) => `Error(n)
|
||||
}
|
||||
| (`Normal(v1), `Normal(v2)) =>
|
||||
Normal.operate(op, v1, v2)
|
||||
|> E.O.dimap(r => `AnalyticalSolution(r), () => `NoSolution)
|
||||
| (`Lognormal(v1), `Lognormal(v2)) =>
|
||||
Lognormal.operate(op, v1, v2)
|
||||
|> E.O.dimap(r => `AnalyticalSolution(r), () => `NoSolution)
|
||||
| _ => `NoSolution
|
||||
};
|
||||
|
||||
let toShape = (sampleCount, d: symbolicDist): DistTypes.shape =>
|
||||
switch (d) {
|
||||
| `Float(v) =>
|
||||
Discrete(
|
||||
Discrete.make(
|
||||
~integralSumCache=Some(1.0),
|
||||
{xs: [|v|], ys: [|1.0|]},
|
||||
),
|
||||
)
|
||||
| _ =>
|
||||
let xs = interpolateXs(~xSelection=`ByWeight, d, sampleCount);
|
||||
let ys = xs |> E.A.fmap(x => pdf(x, d));
|
||||
Continuous(Continuous.make(~integralSumCache=Some(1.0), {xs, ys}));
|
||||
};
|
||||
};
|
|
@ -1,49 +0,0 @@
|
|||
type normal = {
|
||||
mean: float,
|
||||
stdev: float,
|
||||
};
|
||||
|
||||
type lognormal = {
|
||||
mu: float,
|
||||
sigma: float,
|
||||
};
|
||||
|
||||
type uniform = {
|
||||
low: float,
|
||||
high: float,
|
||||
};
|
||||
|
||||
type beta = {
|
||||
alpha: float,
|
||||
beta: float,
|
||||
};
|
||||
|
||||
type exponential = {rate: float};
|
||||
|
||||
type cauchy = {
|
||||
local: float,
|
||||
scale: float,
|
||||
};
|
||||
|
||||
type triangular = {
|
||||
low: float,
|
||||
medium: float,
|
||||
high: float,
|
||||
};
|
||||
|
||||
type symbolicDist = [
|
||||
| `Normal(normal)
|
||||
| `Beta(beta)
|
||||
| `Lognormal(lognormal)
|
||||
| `Uniform(uniform)
|
||||
| `Exponential(exponential)
|
||||
| `Cauchy(cauchy)
|
||||
| `Triangular(triangular)
|
||||
| `Float(float) // Dirac delta at x. Practically useful only in the context of multimodals.
|
||||
];
|
||||
|
||||
type analyticalSimplificationResult = [
|
||||
| `AnalyticalSolution(symbolicDist)
|
||||
| `Error(string)
|
||||
| `NoSolution
|
||||
];
|
|
@ -1,258 +0,0 @@
|
|||
open TypeSystem;
|
||||
|
||||
let wrongInputsError = (r: array(typedValue)) => {
|
||||
let inputs = r |> E.A.fmap(TypedValue.toString) |>Js.String.concatMany(_, ",");
|
||||
Js.log3("Inputs were", inputs, r);
|
||||
Error("Wrong inputs. The inputs were:" ++ inputs);
|
||||
};
|
||||
|
||||
let to_: (float, float) => result(node, string) =
|
||||
(low, high) =>
|
||||
switch (low, high) {
|
||||
| (low, high) when low <= 0.0 && low < high =>
|
||||
Ok(`SymbolicDist(SymbolicDist.Normal.from90PercentCI(low, high)))
|
||||
| (low, high) when low < high =>
|
||||
Ok(`SymbolicDist(SymbolicDist.Lognormal.from90PercentCI(low, high)))
|
||||
| (_, _) => Error("Low value must be less than high value.")
|
||||
};
|
||||
|
||||
let makeSymbolicFromTwoFloats = (name, fn) =>
|
||||
Function.T.make(
|
||||
~name,
|
||||
~outputType=`SamplingDistribution,
|
||||
~inputTypes=[|`Float, `Float|],
|
||||
~run=
|
||||
fun
|
||||
| [|`Float(a), `Float(b)|] => Ok(`SymbolicDist(fn(a, b)))
|
||||
| e => wrongInputsError(e),
|
||||
(),
|
||||
);
|
||||
|
||||
let makeSymbolicFromOneFloat = (name, fn) =>
|
||||
Function.T.make(
|
||||
~name,
|
||||
~outputType=`SamplingDistribution,
|
||||
~inputTypes=[|`Float|],
|
||||
~run=
|
||||
fun
|
||||
| [|`Float(a)|] => Ok(`SymbolicDist(fn(a)))
|
||||
| e => wrongInputsError(e),
|
||||
(),
|
||||
);
|
||||
|
||||
let makeDistFloat = (name, fn) =>
|
||||
Function.T.make(
|
||||
~name,
|
||||
~outputType=`SamplingDistribution,
|
||||
~inputTypes=[|`SamplingDistribution, `Float|],
|
||||
~run=
|
||||
fun
|
||||
| [|`SamplingDist(a), `Float(b)|] => fn(a, b)
|
||||
| [|`RenderedDist(a), `Float(b)|] => fn(`RenderedDist(a), b)
|
||||
| e => wrongInputsError(e),
|
||||
(),
|
||||
);
|
||||
|
||||
let makeRenderedDistFloat = (name, fn) =>
|
||||
Function.T.make(
|
||||
~name,
|
||||
~outputType=`RenderedDistribution,
|
||||
~inputTypes=[|`RenderedDistribution, `Float|],
|
||||
~shouldCoerceTypes=true,
|
||||
~run=
|
||||
fun
|
||||
| [|`RenderedDist(a), `Float(b)|] => fn(a, b)
|
||||
| e => wrongInputsError(e),
|
||||
(),
|
||||
);
|
||||
|
||||
let makeDist = (name, fn) =>
|
||||
Function.T.make(
|
||||
~name,
|
||||
~outputType=`SamplingDistribution,
|
||||
~inputTypes=[|`SamplingDistribution|],
|
||||
~run=
|
||||
fun
|
||||
| [|`SamplingDist(a)|] => fn(a)
|
||||
| [|`RenderedDist(a)|] => fn(`RenderedDist(a))
|
||||
| e => wrongInputsError(e),
|
||||
(),
|
||||
);
|
||||
|
||||
let floatFromDist =
|
||||
(
|
||||
distToFloatOp: ExpressionTypes.distToFloatOperation,
|
||||
t: TypeSystem.samplingDist,
|
||||
)
|
||||
: result(node, string) => {
|
||||
switch (t) {
|
||||
| `SymbolicDist(s) =>
|
||||
SymbolicDist.T.operate(distToFloatOp, s)
|
||||
|> E.R.bind(_, v => Ok(`SymbolicDist(`Float(v))))
|
||||
| `RenderedDist(rs) =>
|
||||
Shape.operate(distToFloatOp, rs) |> (v => Ok(`SymbolicDist(`Float(v))))
|
||||
};
|
||||
};
|
||||
|
||||
let verticalScaling = (scaleOp, rs, scaleBy) => {
|
||||
// scaleBy has to be a single float, otherwise we'll return an error.
|
||||
let fn = (secondary, main) =>
|
||||
Operation.Scale.toFn(scaleOp, main, secondary);
|
||||
let integralSumCacheFn = Operation.Scale.toIntegralSumCacheFn(scaleOp);
|
||||
let integralCacheFn = Operation.Scale.toIntegralCacheFn(scaleOp);
|
||||
Ok(
|
||||
`RenderedDist(
|
||||
Shape.T.mapY(
|
||||
~integralSumCacheFn=integralSumCacheFn(scaleBy),
|
||||
~integralCacheFn=integralCacheFn(scaleBy),
|
||||
~fn=fn(scaleBy),
|
||||
rs,
|
||||
),
|
||||
),
|
||||
);
|
||||
};
|
||||
|
||||
module Multimodal = {
|
||||
let getByNameResult = ExpressionTypes.ExpressionTree.Hash.getByNameResult;
|
||||
|
||||
let _paramsToDistsAndWeights = (r: array(typedValue)) =>
|
||||
switch (r) {
|
||||
| [|`Hash(r)|] =>
|
||||
let dists =
|
||||
getByNameResult(r, "dists")
|
||||
->E.R.bind(TypeSystem.TypedValue.toArray)
|
||||
->E.R.bind(r =>
|
||||
r
|
||||
|> E.A.fmap(TypeSystem.TypedValue.toDist)
|
||||
|> E.A.R.firstErrorOrOpen
|
||||
);
|
||||
let weights =
|
||||
getByNameResult(r, "weights")
|
||||
->E.R.bind(TypeSystem.TypedValue.toArray)
|
||||
->E.R.bind(r =>
|
||||
r
|
||||
|> E.A.fmap(TypeSystem.TypedValue.toFloat)
|
||||
|> E.A.R.firstErrorOrOpen
|
||||
);
|
||||
|
||||
E.R.merge(dists, weights)
|
||||
|> E.R.fmap(((a, b)) =>
|
||||
E.A.zipMaxLength(a, b)
|
||||
|> E.A.fmap(((a, b)) =>
|
||||
(a |> E.O.toExn(""), b |> E.O.default(1.0))
|
||||
)
|
||||
);
|
||||
| _ => Error("Needs items")
|
||||
};
|
||||
let _runner: array(typedValue) => result(node, string) =
|
||||
r => {
|
||||
let paramsToDistsAndWeights =
|
||||
_paramsToDistsAndWeights(r)
|
||||
|> E.R.fmap(
|
||||
E.A.fmap(((dist, weight)) =>
|
||||
`FunctionCall((
|
||||
"scaleMultiply",
|
||||
[|dist, `SymbolicDist(`Float(weight))|],
|
||||
))
|
||||
),
|
||||
);
|
||||
let pointwiseSum: result(node, string) =
|
||||
paramsToDistsAndWeights->E.R.bind(
|
||||
E.R.errorIfCondition(E.A.isEmpty, "Needs one input"),
|
||||
)
|
||||
|> E.R.fmap(r =>
|
||||
r
|
||||
|> Js.Array.sliceFrom(1)
|
||||
|> E.A.fold_left(
|
||||
(acc, x) => {`PointwiseCombination((`Add, acc, x))},
|
||||
E.A.unsafe_get(r, 0),
|
||||
)
|
||||
);
|
||||
pointwiseSum;
|
||||
};
|
||||
|
||||
let _function =
|
||||
Function.T.make(
|
||||
~name="multimodal",
|
||||
~outputType=`SamplingDistribution,
|
||||
~inputTypes=[|
|
||||
`Hash([|
|
||||
("dists", `Array(`SamplingDistribution)),
|
||||
("weights", `Array(`Float)),
|
||||
|]),
|
||||
|],
|
||||
~run=_runner,
|
||||
(),
|
||||
);
|
||||
};
|
||||
|
||||
let all = [|
|
||||
makeSymbolicFromTwoFloats("normal", SymbolicDist.Normal.make),
|
||||
makeSymbolicFromTwoFloats("uniform", SymbolicDist.Uniform.make),
|
||||
makeSymbolicFromTwoFloats("beta", SymbolicDist.Beta.make),
|
||||
makeSymbolicFromTwoFloats("lognormal", SymbolicDist.Lognormal.make),
|
||||
makeSymbolicFromTwoFloats(
|
||||
"lognormalFromMeanAndStdDev",
|
||||
SymbolicDist.Lognormal.fromMeanAndStdev,
|
||||
),
|
||||
makeSymbolicFromOneFloat("exponential", SymbolicDist.Exponential.make),
|
||||
Function.T.make(
|
||||
~name="to",
|
||||
~outputType=`SamplingDistribution,
|
||||
~inputTypes=[|`Float, `Float|],
|
||||
~run=
|
||||
fun
|
||||
| [|`Float(a), `Float(b)|] => to_(a, b)
|
||||
| e => wrongInputsError(e),
|
||||
(),
|
||||
),
|
||||
Function.T.make(
|
||||
~name="triangular",
|
||||
~outputType=`SamplingDistribution,
|
||||
~inputTypes=[|`Float, `Float, `Float|],
|
||||
~run=
|
||||
fun
|
||||
| [|`Float(a), `Float(b), `Float(c)|] =>
|
||||
SymbolicDist.Triangular.make(a, b, c)
|
||||
|> E.R.fmap(r => `SymbolicDist(r))
|
||||
| e => wrongInputsError(e),
|
||||
(),
|
||||
),
|
||||
makeDistFloat("pdf", (dist, float) => floatFromDist(`Pdf(float), dist)),
|
||||
makeDistFloat("inv", (dist, float) => floatFromDist(`Inv(float), dist)),
|
||||
makeDistFloat("cdf", (dist, float) => floatFromDist(`Cdf(float), dist)),
|
||||
makeDist("mean", dist => floatFromDist(`Mean, dist)),
|
||||
makeDist("sample", dist => floatFromDist(`Sample, dist)),
|
||||
Function.T.make(
|
||||
~name="render",
|
||||
~outputType=`RenderedDistribution,
|
||||
~inputTypes=[|`RenderedDistribution|],
|
||||
~run=
|
||||
fun
|
||||
| [|`RenderedDist(c)|] => Ok(`RenderedDist(c))
|
||||
| e => wrongInputsError(e),
|
||||
(),
|
||||
),
|
||||
Function.T.make(
|
||||
~name="normalize",
|
||||
~outputType=`SamplingDistribution,
|
||||
~inputTypes=[|`SamplingDistribution|],
|
||||
~run=
|
||||
fun
|
||||
| [|`SamplingDist(`SymbolicDist(c))|] => Ok(`SymbolicDist(c))
|
||||
| [|`SamplingDist(`RenderedDist(c))|] =>
|
||||
Ok(`RenderedDist(Shape.T.normalize(c)))
|
||||
| e => wrongInputsError(e),
|
||||
(),
|
||||
),
|
||||
makeRenderedDistFloat("scaleExp", (dist, float) =>
|
||||
verticalScaling(`Exponentiate, dist, float)
|
||||
),
|
||||
makeRenderedDistFloat("scaleMultiply", (dist, float) =>
|
||||
verticalScaling(`Multiply, dist, float)
|
||||
),
|
||||
makeRenderedDistFloat("scaleLog", (dist, float) =>
|
||||
verticalScaling(`Log, dist, float)
|
||||
),
|
||||
Multimodal._function
|
||||
|];
|
|
@ -1,228 +0,0 @@
|
|||
type node = ExpressionTypes.ExpressionTree.node;
|
||||
let getFloat = ExpressionTypes.ExpressionTree.getFloat;
|
||||
|
||||
type samplingDist = [
|
||||
| `SymbolicDist(SymbolicTypes.symbolicDist)
|
||||
| `RenderedDist(DistTypes.shape)
|
||||
];
|
||||
|
||||
type hashType = array((string, _type))
|
||||
and _type = [
|
||||
| `Float
|
||||
| `SamplingDistribution
|
||||
| `RenderedDistribution
|
||||
| `Array(_type)
|
||||
| `Hash(hashType)
|
||||
];
|
||||
|
||||
type hashTypedValue = array((string, typedValue))
|
||||
and typedValue = [
|
||||
| `Float(float)
|
||||
| `RenderedDist(DistTypes.shape)
|
||||
| `SamplingDist(samplingDist)
|
||||
| `Array(array(typedValue))
|
||||
| `Hash(hashTypedValue)
|
||||
];
|
||||
|
||||
type _function = {
|
||||
name: string,
|
||||
inputTypes: array(_type),
|
||||
outputType: _type,
|
||||
run: array(typedValue) => result(node, string),
|
||||
shouldCoerceTypes: bool,
|
||||
};
|
||||
|
||||
type functions = array(_function);
|
||||
type inputNodes = array(node);
|
||||
|
||||
module TypedValue = {
|
||||
let rec toString: typedValue => string =
|
||||
fun
|
||||
| `SamplingDist(_) => "[sampling dist]"
|
||||
| `RenderedDist(_) => "[rendered Shape]"
|
||||
| `Float(f) => "Float: " ++ Js.Float.toString(f)
|
||||
| `Array(a) =>
|
||||
"[" ++ (a |> E.A.fmap(toString) |> Js.String.concatMany(_, ",")) ++ "]"
|
||||
| `Hash(v) =>
|
||||
"{"
|
||||
++ (
|
||||
v
|
||||
|> E.A.fmap(((name, value)) => name ++ ":" ++ toString(value))
|
||||
|> Js.String.concatMany(_, ",")
|
||||
)
|
||||
++ "}";
|
||||
|
||||
let rec fromNode = (node: node): result(typedValue, string) =>
|
||||
switch (node) {
|
||||
| `SymbolicDist(`Float(r)) => Ok(`Float(r))
|
||||
| `SymbolicDist(s) => Ok(`SamplingDist(`SymbolicDist(s)))
|
||||
| `RenderedDist(s) => Ok(`RenderedDist(s))
|
||||
| `Array(r) =>
|
||||
r
|
||||
|> E.A.fmap(fromNode)
|
||||
|> E.A.R.firstErrorOrOpen
|
||||
|> E.R.fmap(r => `Array(r))
|
||||
| `Hash(hash) =>
|
||||
hash
|
||||
|> E.A.fmap(((name, t)) => fromNode(t) |> E.R.fmap(r => (name, r)))
|
||||
|> E.A.R.firstErrorOrOpen
|
||||
|> E.R.fmap(r => `Hash(r))
|
||||
| e => Error("Wrong type: " ++ ExpressionTreeBasic.toString(e))
|
||||
};
|
||||
|
||||
// todo: Arrays and hashes
|
||||
let rec fromNodeWithTypeCoercion = (evaluationParams, _type: _type, node) => {
|
||||
switch (_type, node) {
|
||||
| (`Float, _) =>
|
||||
switch (getFloat(node)) {
|
||||
| Some(a) => Ok(`Float(a))
|
||||
| _ => Error("Type Error: Expected float.")
|
||||
}
|
||||
| (`SamplingDistribution, _) =>
|
||||
PTypes.SamplingDistribution.renderIfIsNotSamplingDistribution(
|
||||
evaluationParams,
|
||||
node,
|
||||
)
|
||||
|> E.R.bind(_, fromNode)
|
||||
| (`RenderedDistribution, _) =>{
|
||||
ExpressionTypes.ExpressionTree.Render.render(evaluationParams, node)
|
||||
|> E.R.bind(_, fromNode);
|
||||
}
|
||||
| (`Array(_type), `Array(b)) =>
|
||||
b
|
||||
|> E.A.fmap(fromNodeWithTypeCoercion(evaluationParams, _type))
|
||||
|> E.A.R.firstErrorOrOpen
|
||||
|> E.R.fmap(r => `Array(r))
|
||||
| (`Hash(named), `Hash(r)) =>
|
||||
let keyValues =
|
||||
named
|
||||
|> E.A.fmap(((name, intendedType)) =>
|
||||
(
|
||||
name,
|
||||
intendedType,
|
||||
ExpressionTypes.ExpressionTree.Hash.getByName(r, name),
|
||||
)
|
||||
);
|
||||
let typedHash =
|
||||
keyValues
|
||||
|> E.A.fmap(((name, intendedType, optionNode)) =>
|
||||
switch (optionNode) {
|
||||
| Some(node) =>
|
||||
fromNodeWithTypeCoercion(evaluationParams, intendedType, node)
|
||||
|> E.R.fmap(node => (name, node))
|
||||
| None => Error("Hash parameter not present in hash.")
|
||||
}
|
||||
)
|
||||
|> E.A.R.firstErrorOrOpen
|
||||
|> E.R.fmap(r => `Hash(r));
|
||||
typedHash;
|
||||
| _ => Error("fromNodeWithTypeCoercion error, sorry.")
|
||||
};
|
||||
};
|
||||
|
||||
let toFloat: typedValue => result(float, string) =
|
||||
fun
|
||||
| `Float(x) => Ok(x)
|
||||
| _ => Error("Not a float");
|
||||
|
||||
let toArray: typedValue => result(array('a), string) =
|
||||
fun
|
||||
| `Array(x) => Ok(x)
|
||||
| _ => Error("Not an array");
|
||||
|
||||
let toNamed: typedValue => result(hashTypedValue, string) =
|
||||
fun
|
||||
| `Hash(x) => Ok(x)
|
||||
| _ => Error("Not a named item");
|
||||
|
||||
let toDist: typedValue => result(node,string) =
|
||||
fun
|
||||
| `SamplingDist(`SymbolicDist(c)) => Ok(`SymbolicDist(c))
|
||||
| `SamplingDist(`RenderedDist(c)) => Ok(`RenderedDist(c))
|
||||
| `RenderedDist(c) => Ok(`RenderedDist(c))
|
||||
| `Float(x) => Ok(`SymbolicDist(`Float(x)))
|
||||
| x => Error("Cannot be converted into a distribution: " ++ toString(x));
|
||||
};
|
||||
|
||||
module Function = {
|
||||
type t = _function;
|
||||
type ts = functions;
|
||||
|
||||
module T = {
|
||||
let make =
|
||||
(~name, ~inputTypes, ~outputType, ~run, ~shouldCoerceTypes=true, _): t => {
|
||||
name,
|
||||
inputTypes,
|
||||
outputType,
|
||||
run,
|
||||
shouldCoerceTypes,
|
||||
};
|
||||
|
||||
let _inputLengthCheck = (inputNodes: inputNodes, t: t) => {
|
||||
let expectedLength = E.A.length(t.inputTypes);
|
||||
let actualLength = E.A.length(inputNodes);
|
||||
expectedLength == actualLength
|
||||
? Ok(inputNodes)
|
||||
: Error(
|
||||
"Wrong number of inputs. Expected"
|
||||
++ (expectedLength |> E.I.toString)
|
||||
++ ". Got:"
|
||||
++ (actualLength |> E.I.toString),
|
||||
);
|
||||
};
|
||||
|
||||
let _coerceInputNodes =
|
||||
(evaluationParams, inputTypes, shouldCoerce, inputNodes) =>
|
||||
Belt.Array.zip(inputTypes, inputNodes)
|
||||
|> E.A.fmap(((def, input)) =>
|
||||
shouldCoerce
|
||||
? TypedValue.fromNodeWithTypeCoercion(
|
||||
evaluationParams,
|
||||
def,
|
||||
input,
|
||||
)
|
||||
: TypedValue.fromNode(input)
|
||||
)
|
||||
|> E.A.R.firstErrorOrOpen;
|
||||
|
||||
let inputsToTypedValues =
|
||||
(
|
||||
evaluationParams: ExpressionTypes.ExpressionTree.evaluationParams,
|
||||
inputNodes: inputNodes,
|
||||
t: t,
|
||||
) => {
|
||||
_inputLengthCheck(inputNodes, t)
|
||||
->E.R.bind(
|
||||
_coerceInputNodes(
|
||||
evaluationParams,
|
||||
t.inputTypes,
|
||||
t.shouldCoerceTypes,
|
||||
),
|
||||
)
|
||||
};
|
||||
|
||||
let run =
|
||||
(
|
||||
evaluationParams: ExpressionTypes.ExpressionTree.evaluationParams,
|
||||
inputNodes: inputNodes,
|
||||
t: t,
|
||||
) => {
|
||||
inputsToTypedValues(evaluationParams, inputNodes, t)->E.R.bind(t.run)
|
||||
|> (
|
||||
fun
|
||||
| Ok(i) => Ok(i)
|
||||
| Error(r) => {
|
||||
Error("Function " ++ t.name ++ " error: " ++ r);
|
||||
}
|
||||
);
|
||||
};
|
||||
};
|
||||
|
||||
module Ts = {
|
||||
let findByName = (ts: ts, n: string) =>
|
||||
ts |> Belt.Array.getBy(_, ({name}) => name == n);
|
||||
|
||||
let findByNameAndRun = (ts: ts, n: string, evaluationParams, inputTypes) =>
|
||||
findByName(ts, n) |> E.O.fmap(T.run(evaluationParams, inputTypes));
|
||||
};
|
||||
};
|
|
@ -1,112 +0,0 @@
|
|||
// Todo: Another way of doing this is with [@bs.scope "normal"], which may be more elegant
|
||||
type normal = {
|
||||
.
|
||||
[@bs.meth] "pdf": (float, float, float) => float,
|
||||
[@bs.meth] "cdf": (float, float, float) => float,
|
||||
[@bs.meth] "inv": (float, float, float) => float,
|
||||
[@bs.meth] "sample": (float, float) => float,
|
||||
[@bs.meth] "mean": (float, float) => float,
|
||||
};
|
||||
type lognormal = {
|
||||
.
|
||||
[@bs.meth] "pdf": (float, float, float) => float,
|
||||
[@bs.meth] "cdf": (float, float, float) => float,
|
||||
[@bs.meth] "inv": (float, float, float) => float,
|
||||
[@bs.meth] "sample": (float, float) => float,
|
||||
[@bs.meth] "mean": (float, float) => float,
|
||||
};
|
||||
type uniform = {
|
||||
.
|
||||
[@bs.meth] "pdf": (float, float, float) => float,
|
||||
[@bs.meth] "cdf": (float, float, float) => float,
|
||||
[@bs.meth] "inv": (float, float, float) => float,
|
||||
[@bs.meth] "sample": (float, float) => float,
|
||||
[@bs.meth] "mean": (float, float) => float,
|
||||
};
|
||||
type beta = {
|
||||
.
|
||||
[@bs.meth] "pdf": (float, float, float) => float,
|
||||
[@bs.meth] "cdf": (float, float, float) => float,
|
||||
[@bs.meth] "inv": (float, float, float) => float,
|
||||
[@bs.meth] "sample": (float, float) => float,
|
||||
[@bs.meth] "mean": (float, float) => float,
|
||||
};
|
||||
type exponential = {
|
||||
.
|
||||
[@bs.meth] "pdf": (float, float) => float,
|
||||
[@bs.meth] "cdf": (float, float) => float,
|
||||
[@bs.meth] "inv": (float, float) => float,
|
||||
[@bs.meth] "sample": float => float,
|
||||
[@bs.meth] "mean": float => float,
|
||||
};
|
||||
type cauchy = {
|
||||
.
|
||||
[@bs.meth] "pdf": (float, float, float) => float,
|
||||
[@bs.meth] "cdf": (float, float, float) => float,
|
||||
[@bs.meth] "inv": (float, float, float) => float,
|
||||
[@bs.meth] "sample": (float, float) => float,
|
||||
};
|
||||
type triangular = {
|
||||
.
|
||||
[@bs.meth] "pdf": (float, float, float, float) => float,
|
||||
[@bs.meth] "cdf": (float, float, float, float) => float,
|
||||
[@bs.meth] "inv": (float, float, float, float) => float,
|
||||
[@bs.meth] "sample": (float, float, float) => float,
|
||||
[@bs.meth] "mean": (float, float, float) => float,
|
||||
};
|
||||
|
||||
// Pareto doesn't have sample for some reason
|
||||
type pareto = {
|
||||
.
|
||||
[@bs.meth] "pdf": (float, float, float) => float,
|
||||
[@bs.meth] "cdf": (float, float, float) => float,
|
||||
[@bs.meth] "inv": (float, float, float) => float,
|
||||
};
|
||||
type poisson = {
|
||||
.
|
||||
[@bs.meth] "pdf": (float, float) => float,
|
||||
[@bs.meth] "cdf": (float, float) => float,
|
||||
[@bs.meth] "sample": float => float,
|
||||
[@bs.meth] "mean": float => float,
|
||||
};
|
||||
type weibull = {
|
||||
.
|
||||
[@bs.meth] "pdf": (float, float, float) => float,
|
||||
[@bs.meth] "cdf": (float, float, float) => float,
|
||||
[@bs.meth] "inv": (float, float, float) => float,
|
||||
[@bs.meth] "sample": (float, float) => float,
|
||||
[@bs.meth] "mean": (float, float) => float,
|
||||
};
|
||||
type binomial = {
|
||||
.
|
||||
[@bs.meth] "pdf": (float, float, float) => float,
|
||||
[@bs.meth] "cdf": (float, float, float) => float,
|
||||
};
|
||||
[@bs.module "jstat"] external normal: normal = "normal";
|
||||
[@bs.module "jstat"] external lognormal: lognormal = "lognormal";
|
||||
[@bs.module "jstat"] external uniform: uniform = "uniform";
|
||||
[@bs.module "jstat"] external beta: beta = "beta";
|
||||
[@bs.module "jstat"] external exponential: exponential = "exponential";
|
||||
[@bs.module "jstat"] external cauchy: cauchy = "cauchy";
|
||||
[@bs.module "jstat"] external triangular: triangular = "triangular";
|
||||
[@bs.module "jstat"] external poisson: poisson = "poisson";
|
||||
[@bs.module "jstat"] external pareto: pareto = "pareto";
|
||||
[@bs.module "jstat"] external weibull: weibull = "weibull";
|
||||
[@bs.module "jstat"] external binomial: binomial = "binomial";
|
||||
|
||||
[@bs.module "jstat"] external sum: array(float) => float = "sum";
|
||||
[@bs.module "jstat"] external product: array(float) => float = "product";
|
||||
[@bs.module "jstat"] external min: array(float) => float = "min";
|
||||
[@bs.module "jstat"] external max: array(float) => float = "max";
|
||||
[@bs.module "jstat"] external mean: array(float) => float = "mean";
|
||||
[@bs.module "jstat"] external geomean: array(float) => float = "geomean";
|
||||
[@bs.module "jstat"] external mode: array(float) => float = "mode";
|
||||
[@bs.module "jstat"] external variance: array(float) => float = "variance";
|
||||
[@bs.module "jstat"] external deviation: array(float) => float = "deviation";
|
||||
[@bs.module "jstat"] external stdev: array(float) => float = "stdev";
|
||||
[@bs.module "jstat"]
|
||||
external quartiles: (array(float)) => array(float) = "quartiles";
|
||||
[@bs.module "jstat"]
|
||||
external quantiles: (array(float), array(float)) => array(float) = "quantiles";
|
||||
[@bs.module "jstat"]
|
||||
external percentile: (array(float), float, bool) => float = "percentile";
|
|
@ -1,5 +0,0 @@
|
|||
[@bs.module "lodash"] external min: array('a) => 'a = "min";
|
||||
[@bs.module "lodash"] external max: array('a) => 'a = "max";
|
||||
[@bs.module "lodash"] external uniq: array('a) => array('a) = "uniq";
|
||||
[@bs.module "lodash"]
|
||||
external countBy: (array('a), 'a => 'b) => Js.Dict.t(int) = "countBy";
|
File diff suppressed because it is too large
Load Diff
|
@ -1,5 +1,5 @@
|
|||
{
|
||||
"name": "SquiggleExperimental",
|
||||
"name": "@foretold-app/squiggle",
|
||||
"reason": {},
|
||||
"sources": [
|
||||
{
|
||||
|
@ -44,4 +44,4 @@
|
|||
"number": "+A-42-48-9-30-4-102"
|
||||
},
|
||||
"ppx-flags": []
|
||||
}
|
||||
}
|
||||
|
|
65792
packages/squiggle-lang/package-lock.json
generated
65792
packages/squiggle-lang/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
|
@ -1,5 +1,5 @@
|
|||
{
|
||||
"name": "squiggle-experimental",
|
||||
"name": "@foretold-app/squiggle",
|
||||
"version": "0.1.9",
|
||||
"homepage": "https://foretold-app.github.io/estiband/",
|
||||
"private": false,
|
||||
|
|
|
@ -37,11 +37,11 @@ module Inputs = {
|
|||
}
|
||||
|
||||
type \"export" = [
|
||||
| #DistPlus(SquiggleExperimental.DistPlus.t)
|
||||
| #DistPlus(DistPlus.t)
|
||||
| #Float(float)
|
||||
| #Function(
|
||||
(array<string>, SquiggleExperimental.ExpressionTypes.ExpressionTree.node),
|
||||
SquiggleExperimental.ExpressionTypes.ExpressionTree.environment,
|
||||
(array<string>, ExpressionTypes.ExpressionTree.node),
|
||||
ExpressionTypes.ExpressionTree.environment,
|
||||
)
|
||||
]
|
||||
|
||||
|
@ -124,7 +124,7 @@ let renderIfNeeded = (inputs: Inputs.inputs, node: ExpressionTypes.ExpressionTre
|
|||
// TODO: Consider using ExpressionTypes.ExpressionTree.getFloat or similar in this function
|
||||
let coersionToExportedTypes = (
|
||||
inputs,
|
||||
env: SquiggleExperimental.ExpressionTypes.ExpressionTree.environment,
|
||||
env: ExpressionTypes.ExpressionTree.environment,
|
||||
node: ExpressionTypes.ExpressionTree.node,
|
||||
): result<\"export", string> =>
|
||||
node
|
||||
|
|
|
@ -170,7 +170,7 @@ module MathAdtToDistDst = {
|
|||
|
||||
let functionParser = (
|
||||
nodeParser: MathJsonToMathJsAdt.arg => Belt.Result.t<
|
||||
SquiggleExperimental.ExpressionTypes.ExpressionTree.node,
|
||||
ExpressionTypes.ExpressionTree.node,
|
||||
string,
|
||||
>,
|
||||
name: string,
|
||||
|
|
|
@ -1,85 +1,85 @@
|
|||
// Todo: Another way of doing this is with [@bs.scope "normal"], which may be more elegant
|
||||
module Normal = {
|
||||
@module("jStat") @scope("normal") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jStat") @scope("normal") external cdf: (float, float, float) => float = "cdf"
|
||||
@module("jStat") @scope("normal") external inv: (float, float, float) => float = "inv"
|
||||
@module("jStat") @scope("normal") external sample: (float, float) => float = "sample"
|
||||
@module("jStat") @scope("normal") external mean: (float, float) => float = "mean"
|
||||
@module("jstat") @scope("normal") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jstat") @scope("normal") external cdf: (float, float, float) => float = "cdf"
|
||||
@module("jstat") @scope("normal") external inv: (float, float, float) => float = "inv"
|
||||
@module("jstat") @scope("normal") external sample: (float, float) => float = "sample"
|
||||
@module("jstat") @scope("normal") external mean: (float, float) => float = "mean"
|
||||
}
|
||||
|
||||
module Lognormal = {
|
||||
@module("jStat") @scope("lognormal") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jStat") @scope("lognormal") external cdf: (float, float, float) => float = "cdf"
|
||||
@module("jStat") @scope("lognormal") external inv: (float, float, float) => float = "inv"
|
||||
@module("jStat") @scope("lognormal") external sample: (float, float) => float = "sample"
|
||||
@module("jStat") @scope("lognormal") external mean: (float, float) => float = "mean"
|
||||
@module("jstat") @scope("lognormal") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jstat") @scope("lognormal") external cdf: (float, float, float) => float = "cdf"
|
||||
@module("jstat") @scope("lognormal") external inv: (float, float, float) => float = "inv"
|
||||
@module("jstat") @scope("lognormal") external sample: (float, float) => float = "sample"
|
||||
@module("jstat") @scope("lognormal") external mean: (float, float) => float = "mean"
|
||||
}
|
||||
|
||||
module Uniform = {
|
||||
@module("jStat") @scope("uniform") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jStat") @scope("uniform") external cdf: (float, float, float) => float = "cdf"
|
||||
@module("jStat") @scope("uniform") external inv: (float, float, float) => float = "inv"
|
||||
@module("jStat") @scope("uniform") external sample: (float, float) => float = "sample"
|
||||
@module("jStat") @scope("uniform") external mean: (float, float) => float = "mean"
|
||||
@module("jstat") @scope("uniform") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jstat") @scope("uniform") external cdf: (float, float, float) => float = "cdf"
|
||||
@module("jstat") @scope("uniform") external inv: (float, float, float) => float = "inv"
|
||||
@module("jstat") @scope("uniform") external sample: (float, float) => float = "sample"
|
||||
@module("jstat") @scope("uniform") external mean: (float, float) => float = "mean"
|
||||
}
|
||||
|
||||
type beta
|
||||
module Beta = {
|
||||
@module("jStat") @scope("uniform") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jStat") @scope("uniform") external cdf: (float, float, float) => float = "cdf"
|
||||
@module("jStat") @scope("uniform") external inv: (float, float, float) => float = "inv"
|
||||
@module("jStat") @scope("uniform") external sample: (float, float) => float = "sample"
|
||||
@module("jStat") @scope("uniform") external mean: (float, float) => float = "mean"
|
||||
@module("jstat") @scope("uniform") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jstat") @scope("uniform") external cdf: (float, float, float) => float = "cdf"
|
||||
@module("jstat") @scope("uniform") external inv: (float, float, float) => float = "inv"
|
||||
@module("jstat") @scope("uniform") external sample: (float, float) => float = "sample"
|
||||
@module("jstat") @scope("uniform") external mean: (float, float) => float = "mean"
|
||||
}
|
||||
|
||||
module Exponential = {
|
||||
@module("jStat") @scope("uniform") external pdf: (float, float) => float = "pdf"
|
||||
@module("jStat") @scope("uniform") external cdf: (float, float) => float = "cdf"
|
||||
@module("jStat") @scope("uniform") external inv: (float, float) => float = "inv"
|
||||
@module("jStat") @scope("uniform") external sample: (float) => float = "sample"
|
||||
@module("jStat") @scope("uniform") external mean: (float) => float = "mean"
|
||||
@module("jstat") @scope("uniform") external pdf: (float, float) => float = "pdf"
|
||||
@module("jstat") @scope("uniform") external cdf: (float, float) => float = "cdf"
|
||||
@module("jstat") @scope("uniform") external inv: (float, float) => float = "inv"
|
||||
@module("jstat") @scope("uniform") external sample: (float) => float = "sample"
|
||||
@module("jstat") @scope("uniform") external mean: (float) => float = "mean"
|
||||
}
|
||||
|
||||
module Cauchy = {
|
||||
@module("jStat") @scope("uniform") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jStat") @scope("uniform") external cdf: (float, float, float) => float = "cdf"
|
||||
@module("jStat") @scope("uniform") external inv: (float, float, float) => float = "inv"
|
||||
@module("jStat") @scope("uniform") external sample: (float, float) => float = "sample"
|
||||
@module("jStat") @scope("uniform") external mean: (float, float) => float = "mean"
|
||||
@module("jstat") @scope("uniform") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jstat") @scope("uniform") external cdf: (float, float, float) => float = "cdf"
|
||||
@module("jstat") @scope("uniform") external inv: (float, float, float) => float = "inv"
|
||||
@module("jstat") @scope("uniform") external sample: (float, float) => float = "sample"
|
||||
@module("jstat") @scope("uniform") external mean: (float, float) => float = "mean"
|
||||
}
|
||||
|
||||
module Triangular = {
|
||||
@module("jStat") @scope("uniform") external pdf: (float, float, float, float) => float = "pdf"
|
||||
@module("jStat") @scope("uniform") external cdf: (float, float, float, float) => float = "cdf"
|
||||
@module("jStat") @scope("uniform") external inv: (float, float, float, float) => float = "inv"
|
||||
@module("jStat") @scope("uniform") external sample: (float, float, float) => float = "sample"
|
||||
@module("jStat") @scope("uniform") external mean: (float, float, float) => float = "mean"
|
||||
@module("jstat") @scope("uniform") external pdf: (float, float, float, float) => float = "pdf"
|
||||
@module("jstat") @scope("uniform") external cdf: (float, float, float, float) => float = "cdf"
|
||||
@module("jstat") @scope("uniform") external inv: (float, float, float, float) => float = "inv"
|
||||
@module("jstat") @scope("uniform") external sample: (float, float, float) => float = "sample"
|
||||
@module("jstat") @scope("uniform") external mean: (float, float, float) => float = "mean"
|
||||
}
|
||||
|
||||
|
||||
module Pareto = {
|
||||
@module("jStat") @scope("uniform") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jStat") @scope("uniform") external cdf: (float, float, float) => float = "cdf"
|
||||
@module("jStat") @scope("uniform") external inv: (float, float, float) => float = "inv"
|
||||
@module("jstat") @scope("uniform") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jstat") @scope("uniform") external cdf: (float, float, float) => float = "cdf"
|
||||
@module("jstat") @scope("uniform") external inv: (float, float, float) => float = "inv"
|
||||
}
|
||||
|
||||
module Poisson = {
|
||||
@module("jStat") @scope("uniform") external pdf: (float, float) => float = "pdf"
|
||||
@module("jStat") @scope("uniform") external cdf: (float, float) => float = "cdf"
|
||||
@module("jStat") @scope("uniform") external sample: (float) => float = "sample"
|
||||
@module("jStat") @scope("uniform") external mean: (float) => float = "mean"
|
||||
@module("jstat") @scope("uniform") external pdf: (float, float) => float = "pdf"
|
||||
@module("jstat") @scope("uniform") external cdf: (float, float) => float = "cdf"
|
||||
@module("jstat") @scope("uniform") external sample: (float) => float = "sample"
|
||||
@module("jstat") @scope("uniform") external mean: (float) => float = "mean"
|
||||
}
|
||||
|
||||
module Weibull = {
|
||||
@module("jStat") @scope("uniform") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jStat") @scope("uniform") external cdf: (float, float,float ) => float = "cdf"
|
||||
@module("jStat") @scope("uniform") external sample: (float,float) => float = "sample"
|
||||
@module("jStat") @scope("uniform") external mean: (float,float) => float = "mean"
|
||||
@module("jstat") @scope("uniform") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jstat") @scope("uniform") external cdf: (float, float,float ) => float = "cdf"
|
||||
@module("jstat") @scope("uniform") external sample: (float,float) => float = "sample"
|
||||
@module("jstat") @scope("uniform") external mean: (float,float) => float = "mean"
|
||||
}
|
||||
|
||||
module Binomial = {
|
||||
@module("jStat") @scope("uniform") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jStat") @scope("uniform") external cdf: (float, float,float ) => float = "cdf"
|
||||
@module("jstat") @scope("uniform") external pdf: (float, float, float) => float = "pdf"
|
||||
@module("jstat") @scope("uniform") external cdf: (float, float,float ) => float = "cdf"
|
||||
}
|
||||
|
||||
@module("jstat") external sum: array<float> => float = "sum"
|
||||
|
|
File diff suppressed because it is too large
Load Diff
1573
packages/website/package-lock.json
generated
Normal file
1573
packages/website/package-lock.json
generated
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user