Add interactive documentation

This commit is contained in:
Sam Nolan 2022-03-25 13:08:46 +11:00
parent cfa2379a16
commit 142d846223
8 changed files with 279 additions and 83 deletions

View File

@ -0,0 +1,136 @@
---
sidebar_position: 7
---
import { SquiggleEditor } from '@quri/squiggle-components'
# Squiggle Functions Reference
## Distributions
### Normal distribution
The `normal(mean, sd)` function creates a normal distribution with the given mean
and standard deviation.
<SquiggleEditor initialSquiggleString="normal(0, 1)" />
### Uniform distribution
The `uniform(low, high)` function creates a uniform distribution between the
two given numbers:
<SquiggleEditor initialSquiggleString="uniform(0, 10)" />
### Lognormal distribution
The `lognormal(mu, sigma)` returns the log of a normal distribution with parameters
mu and sigma. The log of lognormal(mu, sigma) is a normal distribution with parameters
mean mu and standard deviation sigma.
<SquiggleEditor initialSquiggleString="lognormal(0, 1)" />
An alternative format is also available. The "to" notation creates a lognormal
distribution with a 90% confidence interval between the two numbers. We add
this convinience as lognormal distributions are commonly used in practice
<SquiggleEditor initialSquiggleString="2 to 10" />
Furthermore, it's also possible to create a lognormal from it's actual mean
and standard deviation, using `lognormalFromMeanAndStdDev`:
<SquiggleEditor initialSquiggleString="lognormalFromMeanAndStdDev(20, 20)" />
### Beta distribution
The `beta(a, b)` function creates a beta distribution with parameters a and b:
<SquiggleEditor initialSquiggleString="beta(20, 20)" />
### Exponential distribution
The `exponential(mean)` function creates an exponential distribution with the given
mean.
<SquiggleEditor initialSquiggleString="exponential(1)" />
### The Triangular distribution
The `triangular(a,b,c)` function creates a triangular distribution with lower
bound a, mode b and upper bound c:
<SquiggleEditor initialSquiggleString="triangular(1, 2, 4)" />
### Multimodal distriutions
The multimodal function combines 2 or more other distributions to create a weighted
combination of the two. The first positional arguments represent the distributions
to be combined, and the last argument is how much to weigh every distribution in the
combination.
<SquiggleEditor initialSquiggleString="mm(uniform(0,1), normal(1,1), [0.5, 0.5])" />
It's possible to create discrete distributions using this method:
<SquiggleEditor initialSquiggleString="mm(0, 1, [0.2,0.8])" />
As well as mixed distributions:
<SquiggleEditor initialSquiggleString="mm(0, 1 to 10, [0.2,0.8])" />
## Other Functions
### PDF of a distribution
The `pdf(distribution, x)` function returns the density of a distribution at the
given point x:
<SquiggleEditor initialSquiggleString="pdf(normal(0,1),0)" />
### Inverse of a distribution
The `inv(distribution, prob)` gives the value x or which the probability for all values
lower than x is equal to prob. It is the inverse of `cdf`
<SquiggleEditor initialSquiggleString="inv(normal(0,1),0.5)" />
### CDF of a distribution
The `cdf(distribution,x)` gives the cumulative probability of the distribution
or all values lower than x. It is the inverse of `inv`:
<SquiggleEditor initialSquiggleString="cdf(normal(0,1),0)" />
### Mean of a distribution
The `mean(distribution)` function gives the mean (expected value) of a distribution:
<SquiggleEditor initialSquiggleString="mean(normal(5, 10))" />
### Sampling a distribution
The `sample(distribution)` samples a given distribution:
<SquiggleEditor initialSquiggleString="sample(normal(0, 10))" />
### Exponential Scaling
The `scaleExp(distribution, factor)` function scales a distribution's PDF exponentially
in the y axis.
<SquiggleEditor initialSquiggleString="scaleExp(normal(10, 10), 10)" />
### Multiply Scaling
The `scaleMultiply(distribution, factor)` function scales a distribution's PDF by multiplication
in the y axis.
<SquiggleEditor initialSquiggleString="scaleMultiply(normal(10, 10), 2)" />
### Log scaling
The `scaleLog(distribution, factor)` function scales a distribution's PDF by the log
function in the y axis
<SquiggleEditor initialSquiggleString="scaleLog(normal(10, 10), 2)" />

View File

@ -1,5 +1,5 @@
---
sidebar_position: 3
sidebar_position: 4
---
# Future Features
@ -79,3 +79,32 @@ Right now, Monte Carlo simulations are totally random. It would be nicer to be a
## Fixes
- Discrete distributions are particularly buggy. Try ``mm(1,2,3,4,5,6,7,8,9,10) .* (5 to 8)``
## New Functions
### Distributions
```
cauchy() //todo
pareto() //todo
metalog() //todo
```
Possibly change mm to mix, or mx(). Also, change input format, maybe to mx([a,b,c], [a,b,c]).
### Functions
```
samples(distribution, n) //todo
toPdf(distribution) //todo
toCdf(distribution) //todo
toHash(distribution) //todo. Make hash of content, like, {xs:[], ys:[]}
trunctate(distribution, leftValue, rightValue) //todo
leftTrunctate(distribution, leftValue) //todo
rightTrunctate(distribution, rightValue) //todo
distributionFromSamples(array, params) //todo
distributionFromPoints() //todo
distributionFromHash() //todo
```

View File

@ -0,0 +1,10 @@
---
sidebar_position: 1
---
# Squiggle
Squiggle is a language for writing calculations under uncertainty. It has use
cases in forecasting and writing better evaluations.
The best way to get started with Squiggle is to [try it out yourself](https://playground.squiggle-language.com/).

View File

@ -1,16 +1,36 @@
---
sidebar_position: 2
sidebar_position: 3
---
# Javascript Library
# Javascript Libraries
There's a very simple javscript library for Squiggle here: https://www.npmjs.com/package/squiggle-experimental.
There are two JavaScript packages currently available for Squiggle:
- [`@quri/squiggle-lang`](https://www.npmjs.com/package/@quri/squiggle-lang)
- [`@quri/squiggle-components`](https://www.npmjs.com/package/@quri/squiggle-components)
You can see it live on this Observable page: [https://observablehq.com/d/a99e822870c4ca5f](https://observablehq.com/d/a99e822870c4ca5f).
Types are available for both packages.
## Squiggle Language
## Simple Example
```
let squiggle = require("squiggle-experimental@0.1.9/dist/index.js")
squiggle.runMePlease("3 + normal(50,1))
```
The `@quri/squiggle-lang` package exports a single function, `run`, which given
a string of Squiggle code, will execute the code and return any exports and the
environment created from the squiggle code.
`run` has two optional arguments. The first optional argument allows you to set
sampling settings for Squiggle when representing distributions. The second optional
argument allows you to pass an environment previously created by another `run`
call. Passing this environment will mean that all previously declared variables
in the previous environment will be made available.
The return type of `run` is a bit complicated, and comes from auto generated js
code that comes from rescript. I highly recommend using typescript when using
this library to help navigate the return type.
## Squiggle Components
The `@quri/squiggle-components` package offers several components and utilities
for people who want to embed Squiggle components into websites. This documentation
relies on `@quri/squiggle-components` frequently.
We host [a storybook](https://components.squiggle-language.com/) with details
and usage of each of the components made available.

View File

@ -1,67 +0,0 @@
---
sidebar_position: 1
---
# Squiggle Language
## Distributions
```js
normal(a,b)
uniform(a,b)
lognormal(a,b)
lognormalFromMeanAndStdDev(mean, stdev)
beta(a,b)
exponential(a)
triangular(a,b,c)
mm(a,b,c, [1,2,3]) //todo: change to mix, or mx(). Also, change input format, maybe to mx([a,b,c], [a,b,c]).
cauchy() //todo
pareto() //todo
metalog() //todo
```
## Functions
```js
pdf(distribution, float)
inv(distribution, float)
cdf(distribution, float)
mean(distribution)
sample(distribution)
scaleExp(distribution, float)
scaleMultiply(distribution, float)
scaleLog(distribution, float)
samples(distribution, n) //todo
toPdf(distribution) //todo
toCdf(distribution) //todo
toHash(distribution) //todo. Make hash of content, like, {xs:[], ys:[]}
trunctate(distribution, leftValue, rightValue) //todo
leftTrunctate(distribution, leftValue) //todo
rightTrunctate(distribution, rightValue) //todo
distributionFromSamples(array, params) //todo
distributionFromPoints() //todo
distributionFromHash() //todo
log() //todo
```
## Example Functions
```js
ozzie_estimate(t) = lognormal({mean: 3 + (t+.1)^2.5, stdev: 8})
nuño_estimate(t) = lognormal({mean: 3 + (t+.1)^2, stdev: 10})
combined(t) = mm(ozzie_estimate(t) .+ nuño_estimate(t))
combined
```
```js
us_economy_2018 = (10.5 to 10.9)T
growth_rate = 1.08 to 1.2
us_economy(t) = us_economy_2018 * (growth_rate^t)
us_population_2019 = 320M to 330M
us_population_growth_rate = 1.01 to 1.1
us_population(t) = us_population_2019 * (us_population_growth_rate^t)
gdp_per_person(t) = us_economy(t)/us_population(t)
gdp_per_person
gdp_per_person
```

View File

@ -0,0 +1,51 @@
---
sidebar_position: 2
---
import { SquiggleEditor } from '@quri/squiggle-components'
# Squiggle Language
The squiggle language has a very simply syntax. The best way to get to understand
it is by simply looking at examples.
## Basic Language
As an example:
<SquiggleEditor initialSquiggleString={`value_of_work = 10 to 70
value_of_work`} />
Squiggle can declare variables (`value_of_work = 10 to 70`) and declare exports
(the lone `value_of_work` line). Variables can be used later in a squiggle program
and even in other notebooks!
An export is rendered to the output view so you can see your result.
the exports can be expressions, such as:
<SquiggleEditor initialSquiggleString="normal(0,1)" />
## Functions
Squiggle supports functions, including the rendering of functions:
<SquiggleEditor initialSquiggleString={`ozzie_estimate(t) = lognormal({mean: 3 + (t+.1)^2.5, stdev: 8})
ozzie_estimate
`} />
## Squiggle units
Squiggle supports using suffixes at the end of numbers to refer to units:
<SquiggleEditor initialSquiggleString={`
us_economy_2018 = (10.5 to 10.9)T
growth_rate = 1.08 to 1.2
us_economy(t) = us_economy_2018 * (growth_rate^t)
us_population_2019 = 320M to 330M
us_population_growth_rate = 1.01 to 1.1
us_population(t) = us_population_2019 * (us_population_growth_rate^t)
gdp_per_person(t) = us_economy(t)/us_population(t)
gdp_per_person`} />

View File

@ -1,5 +1,5 @@
---
sidebar_position: 4
sidebar_position: 5
---
# Three Formats of Distributions

View File

@ -3,18 +3,35 @@
const lightCodeTheme = require('prism-react-renderer/themes/github');
const darkCodeTheme = require('prism-react-renderer/themes/dracula');
const path = require('path');
/** @type {import('@docusaurus/types').Config} */
const config = {
title: 'Squiggle (alpha)',
tagline: "Scorable programming, for use by forecasters",
url: 'https://squiggle-documentation.netlify.app',
tagline: "Estimation language for forecasters",
url: 'https://squiggle-language.com',
baseUrl: '/',
onBrokenLinks: 'throw',
onBrokenMarkdownLinks: 'warn',
favicon: 'img/favicon.ico',
organizationName: 'QURI', // Usually your GitHub org/user name.
projectName: 'Squiggle', // Usually your repo name.
organizationName: 'QURIResearch', // Usually your GitHub org/user name.
projectName: 'squiggle', // Usually your repo name.
plugins: [
() => ({
configureWebpack(config, isServer, utils, content) {
return {
resolve: {
alias : {
"@quri/squiggle-components": path.resolve(__dirname, "../components/src"),
"@quri/squiggle-lang": path.resolve(__dirname, "../squiggle-lang/src/js")
}
}
};
}
})
],
presets: [
[
@ -51,7 +68,7 @@ const config = {
items: [
{
type: 'doc',
docId: 'Language',
docId: 'Introduction',
position: 'left',
label: 'Documentation',
},