Merge pull request #995 from quantified-uncertainty/sampleSet-truncate
Added truncate for SampleSet distribution
This commit is contained in:
commit
0fa34b09e4
|
@ -74,6 +74,7 @@ describe("eval on distribution functions", () => {
|
|||
testEval("truncateLeft(normal(5,2), 3)", "Ok(Point Set Distribution)")
|
||||
testEval("truncateRight(normal(5,2), 3)", "Ok(Point Set Distribution)")
|
||||
testEval("truncate(normal(5,2), 3, 8)", "Ok(Point Set Distribution)")
|
||||
testEval("truncate(normal(5,2) |> SampleSet.fromDist, 3, 8)", "Ok(Sample Set Distribution)")
|
||||
testEval("isNormalized(truncate(normal(5,2), 3, 8))", "Ok(true)")
|
||||
})
|
||||
|
||||
|
|
|
@ -242,11 +242,19 @@ module Truncate = {
|
|||
switch trySymbolicSimplification(leftCutoff, rightCutoff, t) {
|
||||
| Some(r) => Ok(r)
|
||||
| None =>
|
||||
toPointSetFn(t)->E.R2.fmap(t => {
|
||||
DistributionTypes.PointSet(
|
||||
PointSetDist.T.truncate(leftCutoff, rightCutoff, t)->PointSetDist.T.normalize,
|
||||
)
|
||||
})
|
||||
switch t {
|
||||
| SampleSet(t) =>
|
||||
switch SampleSetDist.truncate(t, ~leftCutoff, ~rightCutoff) {
|
||||
| Ok(r) => Ok(SampleSet(r))
|
||||
| Error(err) => Error(DistributionTypes.SampleSetError(err))
|
||||
}
|
||||
| _ =>
|
||||
toPointSetFn(t)->E.R2.fmap(t => {
|
||||
DistributionTypes.PointSet(
|
||||
PointSetDist.T.truncate(leftCutoff, rightCutoff, t)->PointSetDist.T.normalize,
|
||||
)
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -131,3 +131,12 @@ let max = t => T.get(t)->E.A.Floats.max
|
|||
let stdev = t => T.get(t)->E.A.Floats.stdev
|
||||
let variance = t => T.get(t)->E.A.Floats.variance
|
||||
let percentile = (t, f) => T.get(t)->E.A.Floats.percentile(f)
|
||||
|
||||
let truncateLeft = (t, f) => T.get(t)->E.A2.filter(x => x >= f)->T.make
|
||||
let truncateRight = (t, f) => T.get(t)->E.A2.filter(x => x <= f)->T.make
|
||||
|
||||
let truncate = (t, ~leftCutoff: option<float>, ~rightCutoff: option<float>) => {
|
||||
let withTruncatedLeft = t => leftCutoff |> E.O.dimap(left => truncateLeft(t, left), _ => Ok(t))
|
||||
let withTruncatedRight = t => rightCutoff |> E.O.dimap(left => truncateRight(t, left), _ => Ok(t))
|
||||
t->withTruncatedLeft |> E.R2.bind(withTruncatedRight)
|
||||
}
|
||||
|
|
|
@ -290,12 +290,29 @@ quantile: (distribution, number) => number
|
|||
quantile(normal(5, 2), 0.5);
|
||||
```
|
||||
|
||||
### truncateLeft
|
||||
### truncate
|
||||
|
||||
Truncates the left side of a distribution. Returns either a pointSet distribution or a symbolic distribution.
|
||||
Truncates both the left side and the right side of a distribution.
|
||||
|
||||
```
|
||||
truncateLeft: (distribution, l => number) => distribution
|
||||
truncate: (distribution, left: number, right: number) => distribution
|
||||
```
|
||||
|
||||
<Admonition type="note" title="Implementation Details">
|
||||
<p>
|
||||
Sample set distributions are truncated by filtering samples, but point set
|
||||
distributions are truncated using direct geometric manipulation. Uniform
|
||||
distributions are truncated symbolically. Symbolic but non-uniform
|
||||
distributions get converted to Point Set distributions.
|
||||
</p>
|
||||
</Admonition>
|
||||
|
||||
### truncateLeft
|
||||
|
||||
Truncates the left side of a distribution.
|
||||
|
||||
```
|
||||
truncateLeft: (distribution, left: number) => distribution
|
||||
```
|
||||
|
||||
**Examples**
|
||||
|
@ -306,10 +323,10 @@ truncateLeft(normal(5, 2), 3);
|
|||
|
||||
### truncateRight
|
||||
|
||||
Truncates the right side of a distribution. Returns either a pointSet distribution or a symbolic distribution.
|
||||
Truncates the right side of a distribution.
|
||||
|
||||
```
|
||||
truncateRight: (distribution, r => number) => distribution
|
||||
truncateRight: (distribution, right: number) => distribution
|
||||
```
|
||||
|
||||
**Examples**
|
||||
|
@ -388,7 +405,7 @@ The only functions that do not return normalized distributions are the pointwise
|
|||
|
||||
### normalize
|
||||
|
||||
Normalize a distribution. This means scaling it appropriately so that it's cumulative sum is equal to 1. This only impacts Pointset distributions, because those are the only ones that can be non-normlized.
|
||||
Normalize a distribution. This means scaling it appropriately so that it's cumulative sum is equal to 1. This only impacts Point Set distributions, because those are the only ones that can be non-normlized.
|
||||
|
||||
```
|
||||
normalize: (distribution) => distribution
|
||||
|
|
Loading…
Reference in New Issue
Block a user