Implemented step function transformation
This commit is contained in:
parent
3e04d3390d
commit
0328b86833
|
@ -2,7 +2,7 @@
|
|||
let timeDist =
|
||||
GenericDistribution.make(
|
||||
~generationSource=
|
||||
GuesstimatorString("mm(floor(normal(30,3)), normal(39,1), [.5,.5])"),
|
||||
GuesstimatorString("mm(floor(normal(30,2)), normal(39,1), [.5,.5])"),
|
||||
~probabilityType=Pdf,
|
||||
~domain=Complete,
|
||||
~unit=TimeDistribution({zero: MomentRe.momentNow(), unit: `days}),
|
||||
|
|
|
@ -23,6 +23,37 @@ module ComplexPowerChart = {
|
|||
};
|
||||
};
|
||||
|
||||
let bar: DistributionTypes.xyShape = {
|
||||
ys: [|0.5, 0.8, 0.4, 1.0, 2.0|],
|
||||
xs: [|0.0, 1., 2., 5., 8.|],
|
||||
};
|
||||
|
||||
module IntegralChart = {
|
||||
[@react.component]
|
||||
let make = (~complexPower: DistributionTypes.complexPower, ~onHover) => {
|
||||
open DistFunctor.ComplexPower;
|
||||
let integral =
|
||||
DistFunctor.ComplexPower.T.Integral.get(~cache=None, complexPower);
|
||||
let continuous =
|
||||
integral
|
||||
|> T.toContinuous
|
||||
|> E.O.fmap(DistFunctor.Continuous.toLinear)
|
||||
|> E.O.fmap(DistFunctor.Continuous.getShape);
|
||||
let minX = T.minX(integral);
|
||||
let maxX = T.maxX(integral);
|
||||
let timeScale =
|
||||
complexPower.unit |> DistributionTypes.DistributionUnit.toJson;
|
||||
<CdfChart__Plain
|
||||
minX
|
||||
maxX
|
||||
?continuous
|
||||
color={`hex("333")}
|
||||
timeScale
|
||||
onHover
|
||||
/>;
|
||||
};
|
||||
};
|
||||
|
||||
[@react.component]
|
||||
let make = (~complexPower: DistributionTypes.complexPower) => {
|
||||
let (x, setX) = React.useState(() => 0.);
|
||||
|
@ -31,8 +62,14 @@ let make = (~complexPower: DistributionTypes.complexPower) => {
|
|||
() => {<ComplexPowerChart complexPower onHover={r => {setX(_ => r)}} />},
|
||||
[|complexPower|],
|
||||
);
|
||||
let chart2 =
|
||||
React.useMemo1(
|
||||
() => {<IntegralChart complexPower onHover={r => {setX(_ => r)}} />},
|
||||
[|complexPower|],
|
||||
);
|
||||
<div>
|
||||
chart
|
||||
chart2
|
||||
<table className="table-auto">
|
||||
<thead>
|
||||
<tr>
|
||||
|
|
|
@ -77,18 +77,28 @@ module Continuous = {
|
|||
: option(DistributionTypes.continuousShape) =>
|
||||
fn(xyShape) |> E.O.fmap(xyShape => make(xyShape, interpolation));
|
||||
|
||||
let toLinear = (t: t): t =>
|
||||
switch (t) {
|
||||
| {interpolation: `Stepwise, xyShape} => {
|
||||
interpolation: `Linear,
|
||||
xyShape: xyShape |> XYShape.Range.stepsToContinuous |> E.O.toExt(""),
|
||||
}
|
||||
| {interpolation: `Linear, _} => t
|
||||
};
|
||||
|
||||
module T =
|
||||
Dist({
|
||||
type t = DistributionTypes.continuousShape;
|
||||
type integral = DistributionTypes.continuousShape;
|
||||
let shapeFn = (fn, t: t) => t |> xyShape |> fn;
|
||||
// TODO: Obviously fix this, it's terrible
|
||||
let integral = (~cache, t) =>
|
||||
cache
|
||||
|> E.O.default(
|
||||
t
|
||||
|> xyShape
|
||||
|> XYShape.Range.integrateWithTriangles
|
||||
|> E.O.toExt("")
|
||||
|> E.O.toExt("Error1")
|
||||
|> fromShape,
|
||||
);
|
||||
// This seems wrong, we really want the ending bit, I'd assume
|
||||
|
@ -118,7 +128,16 @@ module Discrete = {
|
|||
type integral = DistributionTypes.continuousShape;
|
||||
let integral = (~cache, t) =>
|
||||
cache
|
||||
|> E.O.default(t |> XYShape.accumulateYs |> Continuous.fromShape);
|
||||
|> E.O.default(
|
||||
{
|
||||
Continuous.make(
|
||||
XYShape.accumulateYs(t)
|
||||
|> XYShape.Range.stepsToContinuous
|
||||
|> E.O.toExt("ERROR"),
|
||||
`Stepwise,
|
||||
);
|
||||
},
|
||||
);
|
||||
let integralSum = (~cache, t) => t |> XYShape.ySum;
|
||||
let minX = XYShape.minX;
|
||||
let maxX = XYShape.maxX;
|
||||
|
@ -197,26 +216,42 @@ module Mixed = {
|
|||
DistributionTypes.MixedPoint.add(c, d);
|
||||
};
|
||||
|
||||
let toScaledContinuous =
|
||||
({continuous, discreteProbabilityMassFraction}: t) =>
|
||||
Some(
|
||||
let scaleContinuous =
|
||||
({discreteProbabilityMassFraction}: t, continuous) =>
|
||||
continuous
|
||||
|> Continuous.T.scaleBy(
|
||||
~scale=1.0 -. discreteProbabilityMassFraction,
|
||||
),
|
||||
);
|
||||
|> Continuous.T.scaleBy(~scale=1.0 -. discreteProbabilityMassFraction);
|
||||
|
||||
let toScaledDiscrete = ({discrete, discreteProbabilityMassFraction}: t) =>
|
||||
Some(
|
||||
discrete
|
||||
|> Discrete.T.scaleBy(~scale=discreteProbabilityMassFraction),
|
||||
);
|
||||
let scaleDiscrete = ({discreteProbabilityMassFraction}: t, disrete) =>
|
||||
disrete |> Discrete.T.scaleBy(~scale=discreteProbabilityMassFraction);
|
||||
|
||||
let toScaledContinuous = ({continuous} as t: t) =>
|
||||
Some(scaleContinuous(t, continuous));
|
||||
|
||||
let toScaledDiscrete = ({discrete} as t: t) =>
|
||||
Some(scaleDiscrete(t, discrete));
|
||||
|
||||
// TODO: Add these two directly, once interpolation is added.
|
||||
let integral = (~cache, t) => {
|
||||
// let cont = scaledContinuousComponent(t);
|
||||
// let discrete = scaledDiscreteComponent(t);
|
||||
cache |> E.O.toExt("");
|
||||
let integral =
|
||||
(
|
||||
~cache,
|
||||
{continuous, discrete, discreteProbabilityMassFraction} as t: t,
|
||||
) => {
|
||||
cache
|
||||
|> E.O.default(
|
||||
{
|
||||
let cont =
|
||||
continuous
|
||||
|> Continuous.T.Integral.get(~cache=None)
|
||||
|> scaleContinuous(t);
|
||||
let dist =
|
||||
discrete
|
||||
|> Discrete.T.Integral.get(~cache=None)
|
||||
|> Continuous.T.scaleBy(
|
||||
~scale=discreteProbabilityMassFraction,
|
||||
);
|
||||
dist;
|
||||
},
|
||||
);
|
||||
};
|
||||
|
||||
let integralSum =
|
||||
|
@ -323,7 +358,7 @@ module Shape = {
|
|||
);
|
||||
let minX = (t: t) =>
|
||||
mapToAll(t, (Mixed.T.minX, Discrete.T.minX, Continuous.T.minX));
|
||||
let integral = (~cache, t: t) =>
|
||||
let integral = (~cache, t: t) => {
|
||||
mapToAll(
|
||||
t,
|
||||
(
|
||||
|
@ -332,6 +367,7 @@ module Shape = {
|
|||
Continuous.T.Integral.get(~cache),
|
||||
),
|
||||
);
|
||||
};
|
||||
let integralSum = (~cache, t: t) =>
|
||||
mapToAll(
|
||||
t,
|
||||
|
|
|
@ -14,6 +14,11 @@ type xyShape = {
|
|||
ys: array(float),
|
||||
};
|
||||
|
||||
let foo = {xs: [|1., 2., 5.|], ys: [|1., 2., 3.|]};
|
||||
let answer = {xs: [|1., 2., 2., 5., 5.|], ys: [|1., 1., 2., 2., 3.|]};
|
||||
|
||||
let toStepwise = (xyShape: xyShape) => {};
|
||||
|
||||
type interpolationMethod = [ | `Stepwise | `Linear];
|
||||
|
||||
type continuousShape = {
|
||||
|
|
|
@ -15,8 +15,7 @@ let make =
|
|||
unit,
|
||||
};
|
||||
|
||||
let toComplexPower =
|
||||
(~sampleCount, t: genericDistribution): option(complexPower) => {
|
||||
let toComplexPower = (~sampleCount, t: genericDistribution) => {
|
||||
let shape =
|
||||
switch (t.generationSource) {
|
||||
| GuesstimatorString(s) =>
|
||||
|
|
|
@ -19,8 +19,24 @@ let zip = t => Belt.Array.zip(t.xs, t.ys);
|
|||
|
||||
let fmap = (t: t, y): t => {xs: t.xs, ys: t.ys |> E.A.fmap(y)};
|
||||
|
||||
let fromArray = ((xs, ys)): t => {xs, ys};
|
||||
let fromArrays = (xs, ys): t => {xs, ys};
|
||||
let pointwiseMap = (fn, t: t): t => {xs: t.xs, ys: t.ys |> E.A.fmap(fn)};
|
||||
|
||||
let intersperce = (t1: t, t2: t) => {
|
||||
let foo: ref(array((float, float))) = ref([||]);
|
||||
let t1 = zip(t1);
|
||||
let t2 = zip(t2);
|
||||
|
||||
Belt.Array.forEachWithIndex(t1, (i, item) => {
|
||||
switch (Belt.Array.get(t2, i)) {
|
||||
| Some(r) => foo := E.A.append(foo^, [|item, r|])
|
||||
| None => foo := E.A.append(foo^, [|item|])
|
||||
}
|
||||
});
|
||||
foo^ |> Belt.Array.unzip |> fromArray;
|
||||
};
|
||||
|
||||
let scaleCdfTo = (~scaleTo=1., t: t) =>
|
||||
switch (_lastElement(t.ys)) {
|
||||
| Some(n) =>
|
||||
|
@ -35,9 +51,6 @@ let yFold = (fn, t: t) => {
|
|||
|
||||
let ySum = yFold((a, b) => a +. b);
|
||||
|
||||
let fromArray = ((xs, ys)): t => {xs, ys};
|
||||
let fromArrays = (xs, ys): t => {xs, ys};
|
||||
|
||||
let _transverse = fn =>
|
||||
Belt.Array.reduce(_, [||], (items, (x, y)) =>
|
||||
switch (_lastElement(items)) {
|
||||
|
@ -68,6 +81,12 @@ module Range = {
|
|||
let rangeAreaAssumingSteps = (((lastX, lastY), (nextX, _)): zippedRange) =>
|
||||
(nextX -. lastX) *. lastY;
|
||||
|
||||
let rangePointAssumingSteps =
|
||||
(((lastX, lastY), (nextX, nextY)): zippedRange) => (
|
||||
nextX,
|
||||
lastY,
|
||||
);
|
||||
|
||||
let rangeAreaAssumingTriangles =
|
||||
(((lastX, lastY), (nextX, nextY)): zippedRange) =>
|
||||
(nextX -. lastX) *. (lastY +. nextY) /. 2.;
|
||||
|
@ -93,6 +112,15 @@ module Range = {
|
|||
|> E.O.fmap(accumulateYs);
|
||||
|
||||
let derivative = mapYsBasedOnRanges(delta_y_over_delta_x);
|
||||
|
||||
let stepsToContinuous = t =>
|
||||
Belt.Array.zip(t.xs, t.ys)
|
||||
|> E.A.toRanges
|
||||
|> E.R.toOption
|
||||
|> E.O.fmap(r => r |> Belt.Array.map(_, rangePointAssumingSteps))
|
||||
|> E.O.fmap(Belt.Array.unzip)
|
||||
|> E.O.fmap(fromArray)
|
||||
|> E.O.fmap(intersperce(t));
|
||||
};
|
||||
|
||||
let findY = CdfLibrary.Distribution.findY;
|
||||
|
|
Loading…
Reference in New Issue
Block a user