squiggle/src/distPlus/symbolic/SymbolicDist.re

529 lines
17 KiB
ReasonML
Raw Normal View History

2020-03-24 17:48:46 +00:00
type normal = {
mean: float,
stdev: float,
};
type lognormal = {
mu: float,
sigma: float,
};
type uniform = {
low: float,
high: float,
};
type beta = {
alpha: float,
beta: float,
};
2020-03-26 16:01:52 +00:00
type exponential = {rate: float};
type cauchy = {
local: float,
scale: float,
};
type triangular = {
low: float,
medium: float,
high: float,
};
type continuousShape = {
pdf: DistTypes.continuousShape,
cdf: DistTypes.continuousShape,
};
type contType = [ | `Continuous | `Discrete];
2020-03-24 17:48:46 +00:00
type dist = [
| `Normal(normal)
| `Beta(beta)
| `Lognormal(lognormal)
| `Uniform(uniform)
2020-03-26 16:01:52 +00:00
| `Exponential(exponential)
| `Cauchy(cauchy)
| `Triangular(triangular)
| `ContinuousShape(continuousShape)
| `Float(float) // Dirac delta at x. Practically useful only in the context of multimodals.
2020-03-24 17:48:46 +00:00
];
/* Build a tree.
2020-03-24 17:48:46 +00:00
Multiple operations possible:
- PointwiseSum(Scalar, Scalar)
- PointwiseSum(WeightedDist, WeightedDist)
- PointwiseProduct(Scalar, Scalar)
- PointwiseProduct(Scalar, WeightedDist)
- PointwiseProduct(WeightedDist, WeightedDist)
- IndependentVariableSum(WeightedDist, WeightedDist) [i.e., convolution]
- IndependentVariableProduct(WeightedDist, WeightedDist) [i.e. distribution product]
*/
/*type weightedDist = (float, dist);
type bigDistTree =
/* | DistLeaf(dist) */
/* | ScalarLeaf(float) */
/* | PointwiseScalarDistProduct(DistLeaf(d), ScalarLeaf(s)) */
| WeightedDistLeaf(weightedDist)
| PointwiseNormalizedDistSum(array(bigDistTree));
let rec treeIntegral = item => {
switch (item) {
| WeightedDistLeaf((w, d)) => w
| PointwiseNormalizedDistSum(childTrees) =>
childTrees |> E.A.fmap(treeIntegral) |> E.A.Floats.sum
};
};*/
/* bigDist can either be a single distribution, or a
PointwiseCombination, i.e. an array of (dist, weight) tuples */
type bigDist = [ | `Simple(dist) | `PointwiseCombination(pointwiseAdd)]
and pointwiseAdd = array((bigDist, float));
2020-03-24 17:48:46 +00:00
module ContinuousShape = {
type t = continuousShape;
let make = (pdf, cdf): t => {pdf, cdf};
let pdf = (x, t: t) =>
Distributions.Continuous.T.xToY(x, t.pdf).continuous;
let inv = (p, t: t) =>
Distributions.Continuous.T.xToY(p, t.pdf).continuous;
// TODO: Fix the sampling, to have it work correctly.
let sample = (t: t) => 3.0;
let toString = t => {j|CustomContinuousShape|j};
let contType: contType = `Continuous;
};
2020-03-26 16:01:52 +00:00
module Exponential = {
type t = exponential;
let pdf = (x, t: t) => Jstat.exponential##pdf(x, t.rate);
let inv = (p, t: t) => Jstat.exponential##inv(p, t.rate);
let sample = (t: t) => Jstat.exponential##sample(t.rate);
let toString = ({rate}: t) => {j|Exponential($rate)|j};
let contType: contType = `Continuous;
2020-03-26 16:01:52 +00:00
};
module Cauchy = {
type t = cauchy;
let pdf = (x, t: t) => Jstat.cauchy##pdf(x, t.local, t.scale);
let inv = (p, t: t) => Jstat.cauchy##inv(p, t.local, t.scale);
let sample = (t: t) => Jstat.cauchy##sample(t.local, t.scale);
let toString = ({local, scale}: t) => {j|Cauchy($local, $scale)|j};
let contType: contType = `Continuous;
2020-03-26 16:01:52 +00:00
};
module Triangular = {
type t = triangular;
let pdf = (x, t: t) => Jstat.triangular##pdf(x, t.low, t.high, t.medium);
let inv = (p, t: t) => Jstat.triangular##inv(p, t.low, t.high, t.medium);
let sample = (t: t) => Jstat.triangular##sample(t.low, t.high, t.medium);
let toString = ({low, medium, high}: t) => {j|Triangular($low, $medium, $high)|j};
let contType: contType = `Continuous;
2020-03-26 16:01:52 +00:00
};
2020-03-24 17:48:46 +00:00
module Normal = {
type t = normal;
let pdf = (x, t: t) => Jstat.normal##pdf(x, t.mean, t.stdev);
let from90PercentCI = (low, high) => {
let mean = E.A.Floats.mean([|low, high|]);
let stdev = (high -. low) /. (2. *. 1.644854);
`Normal({mean, stdev});
};
2020-03-24 17:48:46 +00:00
let inv = (p, t: t) => Jstat.normal##inv(p, t.mean, t.stdev);
let sample = (t: t) => Jstat.normal##sample(t.mean, t.stdev);
let toString = ({mean, stdev}: t) => {j|Normal($mean,$stdev)|j};
let contType: contType = `Continuous;
2020-03-24 17:48:46 +00:00
};
module Beta = {
type t = beta;
let pdf = (x, t: t) => Jstat.beta##pdf(x, t.alpha, t.beta);
let inv = (p, t: t) => Jstat.beta##inv(p, t.alpha, t.beta);
let sample = (t: t) => Jstat.beta##sample(t.alpha, t.beta);
let toString = ({alpha, beta}: t) => {j|Beta($alpha,$beta)|j};
let contType: contType = `Continuous;
2020-03-24 17:48:46 +00:00
};
module Lognormal = {
type t = lognormal;
let pdf = (x, t: t) => Jstat.lognormal##pdf(x, t.mu, t.sigma);
let inv = (p, t: t) => Jstat.lognormal##inv(p, t.mu, t.sigma);
let sample = (t: t) => Jstat.lognormal##sample(t.mu, t.sigma);
let toString = ({mu, sigma}: t) => {j|Lognormal($mu,$sigma)|j};
let contType: contType = `Continuous;
2020-03-24 17:48:46 +00:00
let from90PercentCI = (low, high) => {
let logLow = Js.Math.log(low);
let logHigh = Js.Math.log(high);
2020-03-26 23:18:19 +00:00
let mu = E.A.Floats.mean([|logLow, logHigh|]);
2020-03-24 17:48:46 +00:00
let sigma = (logHigh -. logLow) /. (2.0 *. 1.645);
`Lognormal({mu, sigma});
};
let fromMeanAndStdev = (mean, stdev) => {
let variance = Js.Math.pow_float(~base=stdev, ~exp=2.0);
let meanSquared = Js.Math.pow_float(~base=mean, ~exp=2.0);
let mu =
Js.Math.log(mean) -. 0.5 *. Js.Math.log(variance /. meanSquared +. 1.0);
let sigma =
Js.Math.pow_float(
~base=Js.Math.log(variance /. meanSquared +. 1.0),
~exp=0.5,
);
`Lognormal({mu, sigma});
};
};
module Uniform = {
type t = uniform;
let pdf = (x, t: t) => Jstat.uniform##pdf(x, t.low, t.high);
let inv = (p, t: t) => Jstat.uniform##inv(p, t.low, t.high);
let sample = (t: t) => Jstat.uniform##sample(t.low, t.high);
let toString = ({low, high}: t) => {j|Uniform($low,$high)|j};
let contType: contType = `Continuous;
};
module Float = {
type t = float;
let pdf = (x, t: t) => x == t ? 1.0 : 0.0;
let inv = (p, t: t) => p < t ? 0.0 : 1.0;
let sample = (t: t) => t;
let toString = Js.Float.toString;
let contType: contType = `Discrete;
2020-03-24 17:48:46 +00:00
};
module GenericSimple = {
let minCdfValue = 0.0001;
let maxCdfValue = 0.9999;
let pdf = (x, dist) =>
switch (dist) {
| `Normal(n) => Normal.pdf(x, n)
2020-03-26 16:01:52 +00:00
| `Triangular(n) => Triangular.pdf(x, n)
| `Exponential(n) => Exponential.pdf(x, n)
| `Cauchy(n) => Cauchy.pdf(x, n)
2020-03-24 17:48:46 +00:00
| `Lognormal(n) => Lognormal.pdf(x, n)
| `Uniform(n) => Uniform.pdf(x, n)
| `Beta(n) => Beta.pdf(x, n)
| `Float(n) => Float.pdf(x, n)
| `ContinuousShape(n) => ContinuousShape.pdf(x, n)
};
let contType = (dist: dist): contType =>
switch (dist) {
| `Normal(_) => Normal.contType
| `Triangular(_) => Triangular.contType
| `Exponential(_) => Exponential.contType
| `Cauchy(_) => Cauchy.contType
| `Lognormal(_) => Lognormal.contType
| `Uniform(_) => Uniform.contType
| `Beta(_) => Beta.contType
| `Float(_) => Float.contType
| `ContinuousShape(_) => ContinuousShape.contType
2020-03-24 17:48:46 +00:00
};
let inv = (x, dist) =>
switch (dist) {
| `Normal(n) => Normal.inv(x, n)
2020-03-26 16:01:52 +00:00
| `Triangular(n) => Triangular.inv(x, n)
| `Exponential(n) => Exponential.inv(x, n)
| `Cauchy(n) => Cauchy.inv(x, n)
2020-03-24 17:48:46 +00:00
| `Lognormal(n) => Lognormal.inv(x, n)
| `Uniform(n) => Uniform.inv(x, n)
| `Beta(n) => Beta.inv(x, n)
| `Float(n) => Float.inv(x, n)
| `ContinuousShape(n) => ContinuousShape.inv(x, n)
2020-03-24 17:48:46 +00:00
};
2020-03-26 16:01:52 +00:00
let sample: dist => float =
fun
2020-03-24 17:48:46 +00:00
| `Normal(n) => Normal.sample(n)
2020-03-26 16:01:52 +00:00
| `Triangular(n) => Triangular.sample(n)
| `Exponential(n) => Exponential.sample(n)
| `Cauchy(n) => Cauchy.sample(n)
2020-03-24 17:48:46 +00:00
| `Lognormal(n) => Lognormal.sample(n)
| `Uniform(n) => Uniform.sample(n)
| `Beta(n) => Beta.sample(n)
| `Float(n) => Float.sample(n)
| `ContinuousShape(n) => ContinuousShape.sample(n);
2020-03-24 17:48:46 +00:00
2020-03-26 16:01:52 +00:00
let toString: dist => string =
fun
| `Triangular(n) => Triangular.toString(n)
| `Exponential(n) => Exponential.toString(n)
| `Cauchy(n) => Cauchy.toString(n)
2020-03-24 17:48:46 +00:00
| `Normal(n) => Normal.toString(n)
| `Lognormal(n) => Lognormal.toString(n)
| `Uniform(n) => Uniform.toString(n)
| `Beta(n) => Beta.toString(n)
| `Float(n) => Float.toString(n)
| `ContinuousShape(n) => ContinuousShape.toString(n);
2020-03-24 17:48:46 +00:00
2020-03-26 16:01:52 +00:00
let min: dist => float =
fun
| `Triangular({low}) => low
| `Exponential(n) => Exponential.inv(minCdfValue, n)
| `Cauchy(n) => Cauchy.inv(minCdfValue, n)
2020-03-24 17:48:46 +00:00
| `Normal(n) => Normal.inv(minCdfValue, n)
| `Lognormal(n) => Lognormal.inv(minCdfValue, n)
| `Uniform({low}) => low
| `Beta(n) => Beta.inv(minCdfValue, n)
| `ContinuousShape(n) => ContinuousShape.inv(minCdfValue, n)
| `Float(n) => n;
2020-03-24 17:48:46 +00:00
2020-03-26 16:01:52 +00:00
let max: dist => float =
fun
| `Triangular(n) => n.high
| `Exponential(n) => Exponential.inv(maxCdfValue, n)
| `Cauchy(n) => Cauchy.inv(maxCdfValue, n)
2020-03-24 17:48:46 +00:00
| `Normal(n) => Normal.inv(maxCdfValue, n)
| `Lognormal(n) => Lognormal.inv(maxCdfValue, n)
| `Beta(n) => Beta.inv(maxCdfValue, n)
| `ContinuousShape(n) => ContinuousShape.inv(maxCdfValue, n)
| `Uniform({high}) => high
| `Float(n) => n;
2020-03-24 17:48:46 +00:00
/* This function returns a list of x's at which to evaluate the overall distribution (for rendering).
This function is called separately for each individual distribution.
When called with xSelection=`Linear, this function will return (sampleCount) x's, evenly
distributed between the min and max of the distribution (whatever those are defined to be above).
When called with xSelection=`ByWeight, this function will distribute the x's such as to
match the cumulative shape of the distribution. This is slower but may give better results.
*/
2020-03-25 15:12:39 +00:00
let interpolateXs =
(~xSelection: [ | `Linear | `ByWeight]=`Linear, dist: dist, sampleCount) => {
2020-06-03 16:24:55 +00:00
switch (xSelection, dist) {
| (`Linear, _) => E.A.Floats.range(min(dist), max(dist), sampleCount)
| (`ByWeight, `Uniform(n)) =>
// In `ByWeight mode, uniform distributions get special treatment because we need two x's
// on either side for proper rendering (just left and right of the discontinuities).
2020-06-03 16:24:55 +00:00
let dx = 0.00001 *. (n.high -. n.low);
[|n.low -. dx, n.low +. dx, n.high -. dx, n.high +. dx|];
| (`ByWeight, _) =>
let ys = E.A.Floats.range(minCdfValue, maxCdfValue, sampleCount);
ys |> E.A.fmap(y => inv(y, dist));
2020-03-25 15:12:39 +00:00
};
};
2020-03-24 17:48:46 +00:00
let toShape =
(~xSelection: [ | `Linear | `ByWeight]=`Linear, dist: dist, sampleCount)
: DistTypes.shape => {
switch (dist) {
| `ContinuousShape(n) => n.pdf |> Distributions.Continuous.T.toShape
| dist =>
let xs = interpolateXs(~xSelection, dist, sampleCount);
let ys = xs |> E.A.fmap(r => pdf(r, dist));
XYShape.T.fromArrays(xs, ys)
|> Distributions.Continuous.make(`Linear, _)
|> Distributions.Continuous.T.toShape;
};
2020-03-24 17:48:46 +00:00
};
};
module PointwiseAddDistributionsWeighted = {
type t = pointwiseAdd;
let normalizeWeights = (weightedDists: t) => {
let total = weightedDists |> E.A.fmap(snd) |> E.A.Floats.sum;
weightedDists |> E.A.fmap(((d, w)) => (d, w /. total));
2020-03-24 17:48:46 +00:00
};
let rec pdf = (x: float, weightedNormalizedDists: t) =>
weightedNormalizedDists
|> E.A.fmap(((d, w)) => {
switch (d) {
| `PointwiseCombination(ts) => pdf(x, ts) *. w
| `Simple(d) => GenericSimple.pdf(x, d) *. w
}
})
2020-03-26 23:18:19 +00:00
|> E.A.Floats.sum;
2020-03-24 17:48:46 +00:00
// TODO: perhaps rename into minCdfX?
// TODO: how should nonexistent min values be handled? They should never happen
let rec min = (dists: t) =>
dists
|> E.A.fmap(((d, w)) => {
switch (d) {
| `PointwiseCombination(ts) => E.O.toExn("Dist has no min", min(ts))
| `Simple(d) => GenericSimple.min(d)
}
})
|> E.A.min;
// TODO: perhaps rename into minCdfX?
let rec max = (dists: t) =>
dists
|> E.A.fmap(((d, w)) => {
switch (d) {
| `PointwiseCombination(ts) => E.O.toExn("Dist has no max", max(ts))
| `Simple(d) => GenericSimple.max(d)
}
})
|> E.A.max;
2020-03-24 17:48:46 +00:00
/*let rec discreteShape = (dists: t, sampleCount: int) => {
let discrete =
dists
|> E.A.fmap(((x, w)) => {
switch (d) {
| `Float(d) => Some((d, w)) // if the distribution is just a number, then the weight is considered the y
| _ => None
}
})
|> E.A.O.concatSomes
|> E.A.fmap(((x, y)) =>
({xs: [|x|], ys: [|y|]}: DistTypes.xyShape)
)
// take an array of xyShapes and combine them together
//* r
|> (
fun
| `Float(r) => Some((r, e))
| _ => None
)
)*/
|> Distributions.Discrete.reduce((+.));
discrete;
};*/
let rec findContinuousXs = (dists: t, sampleCount: int) => {
// we need to go through the tree of distributions and, for the continuous ones, find the xs at which
// later, all distributions will get evaluated.
// we want to accumulate a set of xs.
let xs: array(float) =
dists
|> E.A.fold_left((accXs, (d, w)) => {
switch (d) {
| `Simple(t) when (GenericSimple.contType(t) == `Discrete) => accXs
| `Simple(d) => {
let xs = GenericSimple.interpolateXs(~xSelection=`ByWeight, d, sampleCount)
E.A.append(accXs, xs)
}
| `PointwiseCombination(ts) => {
let xs = findContinuousXs(ts, sampleCount);
E.A.append(accXs, xs)
}
}
}, [||]);
xs
};
/* Accumulate (accContShapes, accDistShapes), each of which is an array of {xs, ys} shapes. */
let rec accumulateContAndDiscShapes = (dists: t, continuousXs: array(float), currentWeight) => {
let normalized = normalizeWeights(dists);
normalized
|> E.A.fold_left(((accContShapes: array(DistTypes.xyShape), accDiscShapes: array(DistTypes.xyShape)), (d, w)) => {
switch (d) {
| `Simple(`Float(x)) => {
let ds: DistTypes.xyShape = {xs: [|x|], ys: [|w *. currentWeight|]};
(accContShapes, E.A.append(accDiscShapes, [|ds|]))
}
| `Simple(d) when (GenericSimple.contType(d) == `Continuous) => {
let ys = continuousXs |> E.A.fmap(x => GenericSimple.pdf(x, d) *. w *. currentWeight);
let cs = XYShape.T.fromArrays(continuousXs, ys);
(E.A.append(accContShapes, [|cs|]), accDiscShapes)
}
| `Simple(d) => (accContShapes, accDiscShapes) // default -- should never happen
| `PointwiseCombination(ts) => {
let (cs, ds) = accumulateContAndDiscShapes(ts, continuousXs, w *. currentWeight);
(E.A.append(accContShapes, cs), E.A.append(accDiscShapes, ds))
}
}
}, ([||]: array(DistTypes.xyShape), [||]: array(DistTypes.xyShape)))
};
/*
We will assume that each dist (of t) in the multimodal has a total of one.
We can therefore normalize the weights of the parts.
However, a multimodal can consist of both discrete and continuous shapes.
These need to be added and collected individually.
*/
let toShape = (dists: t, sampleCount: int) => {
let continuousXs = findContinuousXs(dists, sampleCount);
continuousXs |> Array.fast_sort(compare);
let (contShapes, distShapes) = accumulateContAndDiscShapes(dists, continuousXs, 1.0);
let combinedContinuous = contShapes
|> E.A.fold_left((shapeAcc: DistTypes.xyShape, shape: DistTypes.xyShape) => {
let ys = E.A.fmapi((i, y) => y +. shape.ys[i], shapeAcc.ys);
{xs: continuousXs, ys: ys}
}, {xs: continuousXs, ys: Array.make(Array.length(continuousXs), 0.0)})
|> Distributions.Continuous.make(`Linear);
let combinedDiscrete = Distributions.Discrete.reduce((+.), distShapes)
let shape = MixedShapeBuilder.buildSimple(~continuous=Some(combinedContinuous), ~discrete=combinedDiscrete);
shape |> E.O.toExt("");
2020-03-24 17:48:46 +00:00
};
let rec toString = (dists: t): string => {
2020-03-24 17:48:46 +00:00
let distString =
dists
|> E.A.fmap(((d, _)) =>
switch (d) {
| `Simple(d) => GenericSimple.toString(d)
| `PointwiseCombination(ts: t) => ts |> toString
}
)
2020-03-24 17:48:46 +00:00
|> Js.Array.joinWith(",");
// mm(normal(0,1), normal(1,2)) => "multimodal(normal(0,1), normal(1,2), )
2020-03-25 15:12:39 +00:00
let weights =
dists
|> E.A.fmap(((_, w)) =>
Js.Float.toPrecisionWithPrecision(w, ~digits=2)
2020-03-25 15:12:39 +00:00
)
|> Js.Array.joinWith(",");
2020-03-25 15:12:39 +00:00
{j|multimodal($distString, [$weights])|j};
2020-03-24 17:48:46 +00:00
};
};
// assume that recursive pointwiseNormalizedDistSums are the only type of operation there is.
// in the original, it was a list of (dist, weight) tuples. Now, it's a tree of (dist, weight) tuples, just that every
// dist can be either a GenericSimple or another PointwiseAdd.
/*let toString = (r: bigDistTree) => {
switch (r) {
| WeightedDistLeaf((w, d)) => GenericWeighted.toString(w) // "normal "
| PointwiseNormalizedDistSum(childTrees) => childTrees |> E.A.fmap(toString) |> Js.Array.joinWith("")
}
}*/
2020-03-24 17:48:46 +00:00
let toString = (r: bigDist) =>
// we need to recursively create the string representation of the tree.
2020-03-24 17:48:46 +00:00
r
|> (
fun
| `Simple(d) => GenericSimple.toString(d)
| `PointwiseCombination(d) =>
PointwiseAddDistributionsWeighted.toString(d)
);
let toShape = n =>
fun
| `Simple(d) => GenericSimple.toShape(~xSelection=`ByWeight, d, n)
| `PointwiseCombination(d) =>
PointwiseAddDistributionsWeighted.toShape(d, n);