2022-04-07 02:24:00 +00:00
open Jest
open Expect
let env: DistributionOperation.env = {
2022-04-07 17:50:11 +00:00
sampleCount: 10000,
xyPointLength: 1000,
2022-04-07 02:24:00 +00:00
}
2022-04-07 14:55:51 +00:00
let {toFloat, toDist, toString, toError, fmap} = module(DistributionOperation.Output)
let run = DistributionOperation.run(~env)
2022-04-07 02:24:00 +00:00
let outputMap = fmap(~env)
let toExt: option<'a> => 'a = E.O.toExt(
"Should be impossible to reach (This error is in test file)",
)
let unpackFloat = x => x -> toFloat -> toExt
let mkNormal = (mean, stdev) => GenericDist_Types.Symbolic(#Normal({mean: mean, stdev: stdev}))
let mkBeta = (alpha, beta) => GenericDist_Types.Symbolic(#Beta({alpha: alpha, beta: beta}))
let mkExponential = rate => GenericDist_Types.Symbolic(#Exponential({rate: rate}))
2022-04-07 17:33:12 +00:00
let mkUniform = (low, high) => GenericDist_Types.Symbolic(#Uniform({low: low, high: high}))
let mkCauchy = (local, scale) => GenericDist_Types.Symbolic(#Cauchy({local: local, scale: scale}))
let mkLognormal = (mu, sigma) => GenericDist_Types.Symbolic(#Lognormal({mu: mu, sigma: sigma}))
2022-04-07 02:24:00 +00:00
describe("mixture", () => {
testAll("fair mean of two normal distributions", list{(0.0, 1e2), (-1e1, -1e-4), (-1e1, 1e2), (-1e1, 1e1)}, tup => { // should be property
let (mean1, mean2) = tup
let theMean = {
run(Mixture([(mkNormal(mean1, 9e-1), 0.5), (mkNormal(mean2, 9e-1), 0.5)]))
-> outputMap(FromDist(ToFloat(#Mean)))
}
theMean -> unpackFloat -> expect -> toBeSoCloseTo((mean1 +. mean2) /. 2.0, ~digits=-1) // the .56 is arbitrary? should be 15.0 with a looser tolerance?
})
testAll(
"weighted mean of a beta and an exponential",
// This would not survive property testing, it was easy for me to find cases that NaN'd out.
list{((128.0, 1.0), 2.0), ((2e-1, 64.0), 16.0), ((1e0, 1e0), 64.0)},
tup => {
let (betaParams, rate) = tup
let (alpha, beta) = betaParams
let theMean = {
2022-04-07 12:55:52 +00:00
run(Mixture(
[
2022-04-07 14:55:51 +00:00
(mkBeta(alpha, beta), 0.25),
(mkExponential(rate), 0.75)
2022-04-07 12:55:52 +00:00
]
)) -> outputMap(FromDist(ToFloat(#Mean)))
2022-04-07 02:24:00 +00:00
}
theMean
-> unpackFloat
-> expect
-> toBeSoCloseTo(
0.25 *. 1.0 /. (1.0 +. beta /. alpha) +. 0.75 *. 1.0 /. rate,
~digits=-1
)
}
)
2022-04-07 17:33:12 +00:00
testAll(
"weighted mean of lognormal and uniform",
2022-04-07 17:50:11 +00:00
// Would not survive property tests: very easy to find cases that NaN out.
list{((-1e2,1e1), (2e0,1e0)), ((-1e-16,1e-16), (1e-8,1e0)), ((0.0,1e0), (1e0,1e-2))},
2022-04-07 17:33:12 +00:00
tup => {
let (uniformParams, lognormalParams) = tup
let (low, high) = uniformParams
let (mu, sigma) = lognormalParams
let theMean = {
run(Mixture([(mkUniform(low, high), 0.6), (mkLognormal(mu, sigma), 0.4)]))
-> outputMap(FromDist(ToFloat(#Mean)))
}
theMean
-> unpackFloat
-> expect
2022-04-07 17:50:11 +00:00
-> toBeSoCloseTo(0.6 *. (low +. high) /. 2.0 +. 0.4 *. (mu +. sigma ** 2.0 /. 2.0), ~digits=-1)
2022-04-07 17:33:12 +00:00
}
)
2022-04-07 02:24:00 +00:00
})