2020-07-08 16:00:13 +00:00
|
|
|
open Distributions;
|
|
|
|
|
|
|
|
type t = DistTypes.continuousShape;
|
|
|
|
let getShape = (t: t) => t.xyShape;
|
|
|
|
let interpolation = (t: t) => t.interpolation;
|
|
|
|
let make = (interpolation, xyShape, knownIntegralSum): t => {
|
|
|
|
xyShape,
|
|
|
|
interpolation,
|
|
|
|
knownIntegralSum,
|
|
|
|
};
|
|
|
|
let shapeMap = (fn, {xyShape, interpolation, knownIntegralSum}: t): t => {
|
|
|
|
xyShape: fn(xyShape),
|
|
|
|
interpolation,
|
|
|
|
knownIntegralSum,
|
|
|
|
};
|
|
|
|
let lastY = (t: t) => t |> getShape |> XYShape.T.lastY;
|
|
|
|
let oShapeMap =
|
|
|
|
(fn, {xyShape, interpolation, knownIntegralSum}: t)
|
|
|
|
: option(DistTypes.continuousShape) =>
|
|
|
|
fn(xyShape) |> E.O.fmap(make(interpolation, _, knownIntegralSum));
|
|
|
|
|
|
|
|
let empty: DistTypes.continuousShape = {
|
|
|
|
xyShape: XYShape.T.empty,
|
|
|
|
interpolation: `Linear,
|
|
|
|
knownIntegralSum: Some(0.0),
|
|
|
|
};
|
|
|
|
let combinePointwise =
|
|
|
|
(
|
|
|
|
~knownIntegralSumsFn,
|
|
|
|
fn: (float, float) => float,
|
|
|
|
t1: DistTypes.continuousShape,
|
|
|
|
t2: DistTypes.continuousShape,
|
|
|
|
)
|
|
|
|
: DistTypes.continuousShape => {
|
|
|
|
// If we're adding the distributions, and we know the total of each, then we
|
|
|
|
// can just sum them up. Otherwise, all bets are off.
|
|
|
|
let combinedIntegralSum =
|
|
|
|
Common.combineIntegralSums(
|
|
|
|
knownIntegralSumsFn,
|
|
|
|
t1.knownIntegralSum,
|
|
|
|
t2.knownIntegralSum,
|
|
|
|
);
|
|
|
|
|
|
|
|
make(
|
|
|
|
`Linear,
|
2020-07-13 23:32:45 +00:00
|
|
|
XYShape.PointwiseCombination.combine(
|
|
|
|
(+.),
|
|
|
|
XYShape.XtoY.linearBetweenPointsExtrapolateZero,
|
|
|
|
XYShape.XtoY.linearBetweenPointsExtrapolateZero,
|
2020-07-08 16:00:13 +00:00
|
|
|
t1.xyShape,
|
|
|
|
t2.xyShape,
|
|
|
|
),
|
|
|
|
combinedIntegralSum,
|
|
|
|
);
|
|
|
|
};
|
|
|
|
|
|
|
|
let toLinear = (t: t): option(t) => {
|
|
|
|
switch (t) {
|
|
|
|
| {interpolation: `Stepwise, xyShape, knownIntegralSum} =>
|
|
|
|
xyShape
|
|
|
|
|> XYShape.Range.stepsToContinuous
|
|
|
|
|> E.O.fmap(make(`Linear, _, knownIntegralSum))
|
|
|
|
| {interpolation: `Linear} => Some(t)
|
|
|
|
};
|
|
|
|
};
|
|
|
|
let shapeFn = (fn, t: t) => t |> getShape |> fn;
|
|
|
|
let updateKnownIntegralSum = (knownIntegralSum, t: t): t => {
|
|
|
|
...t,
|
|
|
|
knownIntegralSum,
|
|
|
|
};
|
|
|
|
|
|
|
|
let reduce =
|
|
|
|
(
|
|
|
|
~knownIntegralSumsFn: (float, float) => option(float)=(_, _) => None,
|
|
|
|
fn,
|
|
|
|
continuousShapes,
|
|
|
|
) =>
|
|
|
|
continuousShapes
|
|
|
|
|> E.A.fold_left(combinePointwise(~knownIntegralSumsFn, fn), empty);
|
|
|
|
|
|
|
|
let mapY = (~knownIntegralSumFn=_ => None, fn, t: t) => {
|
|
|
|
let u = E.O.bind(_, knownIntegralSumFn);
|
|
|
|
let yMapFn = shapeMap(XYShape.T.mapY(fn));
|
|
|
|
|
|
|
|
t |> yMapFn |> updateKnownIntegralSum(u(t.knownIntegralSum));
|
|
|
|
};
|
|
|
|
|
|
|
|
let scaleBy = (~scale=1.0, t: t): t => {
|
|
|
|
t
|
|
|
|
|> mapY((r: float) => r *. scale)
|
|
|
|
|> updateKnownIntegralSum(
|
|
|
|
E.O.bind(t.knownIntegralSum, v => Some(scale *. v)),
|
|
|
|
);
|
|
|
|
};
|
|
|
|
|
|
|
|
module T =
|
|
|
|
Dist({
|
|
|
|
type t = DistTypes.continuousShape;
|
|
|
|
type integral = DistTypes.continuousShape;
|
|
|
|
let minX = shapeFn(XYShape.T.minX);
|
|
|
|
let maxX = shapeFn(XYShape.T.maxX);
|
|
|
|
let mapY = mapY;
|
|
|
|
let toDiscreteProbabilityMassFraction = _ => 0.0;
|
|
|
|
let toShape = (t: t): DistTypes.shape => Continuous(t);
|
|
|
|
let xToY = (f, {interpolation, xyShape}: t) => {
|
|
|
|
(
|
|
|
|
switch (interpolation) {
|
|
|
|
| `Stepwise =>
|
|
|
|
xyShape |> XYShape.XtoY.stepwiseIncremental(f) |> E.O.default(0.0)
|
|
|
|
| `Linear => xyShape |> XYShape.XtoY.linear(f)
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|> DistTypes.MixedPoint.makeContinuous;
|
|
|
|
};
|
|
|
|
|
|
|
|
let truncate =
|
|
|
|
(leftCutoff: option(float), rightCutoff: option(float), t: t) => {
|
|
|
|
let lc = E.O.default(neg_infinity, leftCutoff);
|
|
|
|
let rc = E.O.default(infinity, rightCutoff);
|
|
|
|
let truncatedZippedPairs =
|
|
|
|
t
|
|
|
|
|> getShape
|
|
|
|
|> XYShape.T.zip
|
|
|
|
|> XYShape.Zipped.filterByX(x => x >= lc && x <= rc);
|
|
|
|
|
|
|
|
let eps = (t |> getShape |> XYShape.T.xTotalRange) *. 0.0001;
|
|
|
|
|
|
|
|
let leftNewPoint =
|
|
|
|
leftCutoff |> E.O.dimap(lc => [|(lc -. eps, 0.)|], _ => [||]);
|
|
|
|
let rightNewPoint =
|
|
|
|
rightCutoff |> E.O.dimap(rc => [|(rc +. eps, 0.)|], _ => [||]);
|
|
|
|
|
|
|
|
let truncatedZippedPairsWithNewPoints =
|
|
|
|
E.A.concatMany([|leftNewPoint, truncatedZippedPairs, rightNewPoint|]);
|
|
|
|
let truncatedShape =
|
|
|
|
XYShape.T.fromZippedArray(truncatedZippedPairsWithNewPoints);
|
|
|
|
|
|
|
|
make(`Linear, truncatedShape, None);
|
|
|
|
};
|
|
|
|
|
|
|
|
// TODO: This should work with stepwise plots.
|
|
|
|
let integral = (~cache, t) =>
|
|
|
|
if (t |> getShape |> XYShape.T.length > 0) {
|
|
|
|
switch (cache) {
|
|
|
|
| Some(cache) => cache
|
|
|
|
| None =>
|
|
|
|
t
|
|
|
|
|> getShape
|
|
|
|
|> XYShape.Range.integrateWithTriangles
|
|
|
|
|> E.O.toExt("This should not have happened")
|
|
|
|
|> make(`Linear, _, None)
|
|
|
|
};
|
|
|
|
} else {
|
|
|
|
make(`Linear, {xs: [|neg_infinity|], ys: [|0.0|]}, None);
|
|
|
|
};
|
|
|
|
|
|
|
|
let downsample = (~cache=None, length, t): t =>
|
|
|
|
t
|
|
|
|
|> shapeMap(
|
|
|
|
XYShape.XsConversion.proportionByProbabilityMass(
|
|
|
|
length,
|
|
|
|
integral(~cache, t).xyShape,
|
|
|
|
),
|
|
|
|
);
|
|
|
|
let integralEndY = (~cache, t: t) =>
|
|
|
|
t.knownIntegralSum |> E.O.default(t |> integral(~cache) |> lastY);
|
|
|
|
let integralXtoY = (~cache, f, t: t) =>
|
|
|
|
t |> integral(~cache) |> shapeFn(XYShape.XtoY.linear(f));
|
|
|
|
let integralYtoX = (~cache, f, t: t) =>
|
|
|
|
t |> integral(~cache) |> shapeFn(XYShape.YtoX.linear(f));
|
|
|
|
let toContinuous = t => Some(t);
|
|
|
|
let toDiscrete = _ => None;
|
|
|
|
|
|
|
|
let normalize = (t: t): t => {
|
|
|
|
t
|
|
|
|
|> scaleBy(~scale=1. /. integralEndY(~cache=None, t))
|
|
|
|
|> updateKnownIntegralSum(Some(1.0));
|
|
|
|
};
|
|
|
|
|
|
|
|
let normalizedToContinuous = t => Some(t |> normalize);
|
|
|
|
let normalizedToDiscrete = _ => None;
|
|
|
|
|
|
|
|
let mean = (t: t) => {
|
|
|
|
let indefiniteIntegralStepwise = (p, h1) => h1 *. p ** 2.0 /. 2.0;
|
|
|
|
let indefiniteIntegralLinear = (p, a, b) =>
|
|
|
|
a *. p ** 2.0 /. 2.0 +. b *. p ** 3.0 /. 3.0;
|
|
|
|
|
|
|
|
XYShape.Analysis.integrateContinuousShape(
|
|
|
|
~indefiniteIntegralStepwise,
|
|
|
|
~indefiniteIntegralLinear,
|
|
|
|
t,
|
|
|
|
);
|
|
|
|
};
|
|
|
|
let variance = (t: t): float =>
|
|
|
|
XYShape.Analysis.getVarianceDangerously(
|
|
|
|
t,
|
|
|
|
mean,
|
|
|
|
XYShape.Analysis.getMeanOfSquaresContinuousShape,
|
|
|
|
);
|
|
|
|
});
|
|
|
|
|
|
|
|
/* This simply creates multiple copies of the continuous distribution, scaled and shifted according to
|
|
|
|
each discrete data point, and then adds them all together. */
|
|
|
|
let combineAlgebraicallyWithDiscrete =
|
|
|
|
(
|
|
|
|
~downsample=false,
|
|
|
|
op: ExpressionTypes.algebraicOperation,
|
|
|
|
t1: t,
|
|
|
|
t2: DistTypes.discreteShape,
|
|
|
|
) => {
|
|
|
|
let t1s = t1 |> getShape;
|
|
|
|
let t2s = t2.xyShape; // would like to use Discrete.getShape here, but current file structure doesn't allow for that
|
2020-07-12 22:53:53 +00:00
|
|
|
|
2020-07-08 16:00:13 +00:00
|
|
|
let t1n = t1s |> XYShape.T.length;
|
|
|
|
let t2n = t2s |> XYShape.T.length;
|
|
|
|
|
2020-07-12 22:53:53 +00:00
|
|
|
if (t1n > 0 && t2n > 0) {
|
|
|
|
let combinedShape = AlgebraicShapeCombination.combineShapesContinuousDiscrete(op, t1s, t2s);
|
2020-07-08 16:00:13 +00:00
|
|
|
|
2020-07-12 22:53:53 +00:00
|
|
|
let combinedIntegralSum =
|
|
|
|
Common.combineIntegralSums(
|
|
|
|
(a, b) => Some(a *. b),
|
|
|
|
t1.knownIntegralSum,
|
|
|
|
t2.knownIntegralSum,
|
|
|
|
);
|
2020-07-08 16:00:13 +00:00
|
|
|
|
2020-07-12 22:53:53 +00:00
|
|
|
make(`Linear, combinedShape, combinedIntegralSum);
|
|
|
|
} else {
|
|
|
|
empty;
|
|
|
|
}
|
2020-07-08 16:00:13 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
let combineAlgebraically =
|
|
|
|
(~downsample=false, op: ExpressionTypes.algebraicOperation, t1: t, t2: t) => {
|
|
|
|
let s1 = t1 |> getShape;
|
|
|
|
let s2 = t2 |> getShape;
|
|
|
|
let t1n = s1 |> XYShape.T.length;
|
|
|
|
let t2n = s2 |> XYShape.T.length;
|
|
|
|
if (t1n == 0 || t2n == 0) {
|
|
|
|
empty;
|
|
|
|
} else {
|
|
|
|
let combinedShape =
|
|
|
|
AlgebraicShapeCombination.combineShapesContinuousContinuous(op, s1, s2);
|
|
|
|
let combinedIntegralSum =
|
|
|
|
Common.combineIntegralSums(
|
|
|
|
(a, b) => Some(a *. b),
|
|
|
|
t1.knownIntegralSum,
|
|
|
|
t2.knownIntegralSum,
|
|
|
|
);
|
|
|
|
// return a new Continuous distribution
|
|
|
|
make(`Linear, combinedShape, combinedIntegralSum);
|
|
|
|
};
|
|
|
|
};
|