squiggle/packages/squiggle-lang/__tests__/Distributions/Mixture_test.res

66 lines
2.1 KiB
Plaintext
Raw Permalink Normal View History

2022-04-07 02:24:00 +00:00
open Jest
2022-04-12 23:59:40 +00:00
open Expect
open TestHelpers
2022-04-07 02:24:00 +00:00
describe("mixture", () => {
testAll(
2022-04-12 23:59:40 +00:00
"fair mean of two normal distributions",
list{(0.0, 1e2), (-1e1, -1e-4), (-1e1, 1e2), (-1e1, 1e1)},
tup => {
// should be property
let (mean1, mean2) = tup
let meanValue = {
run(Mixture([(mkNormal(mean1, 9e-1), 0.5), (mkNormal(mean2, 9e-1), 0.5)]))->outputMap(
FromDist(ToFloat(#Mean)),
2022-04-07 02:24:00 +00:00
)
}
2022-04-12 23:59:40 +00:00
meanValue->unpackFloat->expect->toBeSoCloseTo((mean1 +. mean2) /. 2.0, ~digits=-1)
},
2022-04-07 02:24:00 +00:00
)
2022-04-07 17:33:12 +00:00
testAll(
2022-04-12 23:59:40 +00:00
"weighted mean of a beta and an exponential",
// This would not survive property testing, it was easy for me to find cases that NaN'd out.
list{((128.0, 1.0), 2.0), ((2e-1, 64.0), 16.0), ((1e0, 1e0), 64.0)},
tup => {
let ((alpha, beta), rate) = tup
let betaWeight = 0.25
let exponentialWeight = 0.75
let meanValue = {
run(
Mixture([(mkBeta(alpha, beta), betaWeight), (mkExponential(rate), exponentialWeight)]),
)->outputMap(FromDist(ToFloat(#Mean)))
2022-04-07 17:33:12 +00:00
}
2022-04-12 23:59:40 +00:00
let betaMean = 1.0 /. (1.0 +. beta /. alpha)
let exponentialMean = 1.0 /. rate
meanValue
->unpackFloat
->expect
->toBeSoCloseTo(betaWeight *. betaMean +. exponentialWeight *. exponentialMean, ~digits=-1)
},
)
testAll(
"weighted mean of lognormal and uniform",
// Would not survive property tests: very easy to find cases that NaN out.
list{((-1e2, 1e1), (2e0, 1e0)), ((-1e-16, 1e-16), (1e-8, 1e0)), ((0.0, 1e0), (1e0, 1e-2))},
tup => {
let ((low, high), (mu, sigma)) = tup
let uniformWeight = 0.6
let lognormalWeight = 0.4
let meanValue = {
run(
Mixture([
(mkUniform(low, high), uniformWeight),
(mkLognormal(mu, sigma), lognormalWeight),
]),
)->outputMap(FromDist(ToFloat(#Mean)))
}
let uniformMean = (low +. high) /. 2.0
let lognormalMean = mu +. sigma ** 2.0 /. 2.0
meanValue
->unpackFloat
->expect
->toBeSoCloseTo(uniformWeight *. uniformMean +. lognormalWeight *. lognormalMean, ~digits=-1)
},
2022-04-07 17:33:12 +00:00
)
2022-04-07 02:24:00 +00:00
})