494 lines
9.2 KiB
JavaScript
494 lines
9.2 KiB
JavaScript
"use strict";
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.bitAndBigNumber = bitAndBigNumber;
|
|
exports.bitNotBigNumber = bitNotBigNumber;
|
|
exports.bitOrBigNumber = bitOrBigNumber;
|
|
exports.bitXor = bitXor;
|
|
exports.bitwise = bitwise;
|
|
exports.leftShiftBigNumber = leftShiftBigNumber;
|
|
exports.rightArithShiftBigNumber = rightArithShiftBigNumber;
|
|
|
|
/**
|
|
* Bitwise and for Bignumbers
|
|
*
|
|
* Special Cases:
|
|
* N & n = N
|
|
* n & 0 = 0
|
|
* n & -1 = n
|
|
* n & n = n
|
|
* I & I = I
|
|
* -I & -I = -I
|
|
* I & -I = 0
|
|
* I & n = n
|
|
* I & -n = I
|
|
* -I & n = 0
|
|
* -I & -n = -I
|
|
*
|
|
* @param {BigNumber} x
|
|
* @param {BigNumber} y
|
|
* @return {BigNumber} Result of `x` & `y`, is fully precise
|
|
* @private
|
|
*/
|
|
function bitAndBigNumber(x, y) {
|
|
if (x.isFinite() && !x.isInteger() || y.isFinite() && !y.isInteger()) {
|
|
throw new Error('Integers expected in function bitAnd');
|
|
}
|
|
|
|
var BigNumber = x.constructor;
|
|
|
|
if (x.isNaN() || y.isNaN()) {
|
|
return new BigNumber(NaN);
|
|
}
|
|
|
|
if (x.isZero() || y.eq(-1) || x.eq(y)) {
|
|
return x;
|
|
}
|
|
|
|
if (y.isZero() || x.eq(-1)) {
|
|
return y;
|
|
}
|
|
|
|
if (!x.isFinite() || !y.isFinite()) {
|
|
if (!x.isFinite() && !y.isFinite()) {
|
|
if (x.isNegative() === y.isNegative()) {
|
|
return x;
|
|
}
|
|
|
|
return new BigNumber(0);
|
|
}
|
|
|
|
if (!x.isFinite()) {
|
|
if (y.isNegative()) {
|
|
return x;
|
|
}
|
|
|
|
if (x.isNegative()) {
|
|
return new BigNumber(0);
|
|
}
|
|
|
|
return y;
|
|
}
|
|
|
|
if (!y.isFinite()) {
|
|
if (x.isNegative()) {
|
|
return y;
|
|
}
|
|
|
|
if (y.isNegative()) {
|
|
return new BigNumber(0);
|
|
}
|
|
|
|
return x;
|
|
}
|
|
}
|
|
|
|
return bitwise(x, y, function (a, b) {
|
|
return a & b;
|
|
});
|
|
}
|
|
/**
|
|
* Bitwise not
|
|
* @param {BigNumber} x
|
|
* @return {BigNumber} Result of ~`x`, fully precise
|
|
*
|
|
*/
|
|
|
|
|
|
function bitNotBigNumber(x) {
|
|
if (x.isFinite() && !x.isInteger()) {
|
|
throw new Error('Integer expected in function bitNot');
|
|
}
|
|
|
|
var BigNumber = x.constructor;
|
|
var prevPrec = BigNumber.precision;
|
|
BigNumber.config({
|
|
precision: 1E9
|
|
});
|
|
var result = x.plus(new BigNumber(1));
|
|
result.s = -result.s || null;
|
|
BigNumber.config({
|
|
precision: prevPrec
|
|
});
|
|
return result;
|
|
}
|
|
/**
|
|
* Bitwise OR for BigNumbers
|
|
*
|
|
* Special Cases:
|
|
* N | n = N
|
|
* n | 0 = n
|
|
* n | -1 = -1
|
|
* n | n = n
|
|
* I | I = I
|
|
* -I | -I = -I
|
|
* I | -n = -1
|
|
* I | -I = -1
|
|
* I | n = I
|
|
* -I | n = -I
|
|
* -I | -n = -n
|
|
*
|
|
* @param {BigNumber} x
|
|
* @param {BigNumber} y
|
|
* @return {BigNumber} Result of `x` | `y`, fully precise
|
|
*/
|
|
|
|
|
|
function bitOrBigNumber(x, y) {
|
|
if (x.isFinite() && !x.isInteger() || y.isFinite() && !y.isInteger()) {
|
|
throw new Error('Integers expected in function bitOr');
|
|
}
|
|
|
|
var BigNumber = x.constructor;
|
|
|
|
if (x.isNaN() || y.isNaN()) {
|
|
return new BigNumber(NaN);
|
|
}
|
|
|
|
var negOne = new BigNumber(-1);
|
|
|
|
if (x.isZero() || y.eq(negOne) || x.eq(y)) {
|
|
return y;
|
|
}
|
|
|
|
if (y.isZero() || x.eq(negOne)) {
|
|
return x;
|
|
}
|
|
|
|
if (!x.isFinite() || !y.isFinite()) {
|
|
if (!x.isFinite() && !x.isNegative() && y.isNegative() || x.isNegative() && !y.isNegative() && !y.isFinite()) {
|
|
return negOne;
|
|
}
|
|
|
|
if (x.isNegative() && y.isNegative()) {
|
|
return x.isFinite() ? x : y;
|
|
}
|
|
|
|
return x.isFinite() ? y : x;
|
|
}
|
|
|
|
return bitwise(x, y, function (a, b) {
|
|
return a | b;
|
|
});
|
|
}
|
|
/**
|
|
* Applies bitwise function to numbers
|
|
* @param {BigNumber} x
|
|
* @param {BigNumber} y
|
|
* @param {function (a, b)} func
|
|
* @return {BigNumber}
|
|
*/
|
|
|
|
|
|
function bitwise(x, y, func) {
|
|
var BigNumber = x.constructor;
|
|
var xBits, yBits;
|
|
var xSign = +(x.s < 0);
|
|
var ySign = +(y.s < 0);
|
|
|
|
if (xSign) {
|
|
xBits = decCoefficientToBinaryString(bitNotBigNumber(x));
|
|
|
|
for (var i = 0; i < xBits.length; ++i) {
|
|
xBits[i] ^= 1;
|
|
}
|
|
} else {
|
|
xBits = decCoefficientToBinaryString(x);
|
|
}
|
|
|
|
if (ySign) {
|
|
yBits = decCoefficientToBinaryString(bitNotBigNumber(y));
|
|
|
|
for (var _i = 0; _i < yBits.length; ++_i) {
|
|
yBits[_i] ^= 1;
|
|
}
|
|
} else {
|
|
yBits = decCoefficientToBinaryString(y);
|
|
}
|
|
|
|
var minBits, maxBits, minSign;
|
|
|
|
if (xBits.length <= yBits.length) {
|
|
minBits = xBits;
|
|
maxBits = yBits;
|
|
minSign = xSign;
|
|
} else {
|
|
minBits = yBits;
|
|
maxBits = xBits;
|
|
minSign = ySign;
|
|
}
|
|
|
|
var shortLen = minBits.length;
|
|
var longLen = maxBits.length;
|
|
var expFuncVal = func(xSign, ySign) ^ 1;
|
|
var outVal = new BigNumber(expFuncVal ^ 1);
|
|
var twoPower = new BigNumber(1);
|
|
var two = new BigNumber(2);
|
|
var prevPrec = BigNumber.precision;
|
|
BigNumber.config({
|
|
precision: 1E9
|
|
});
|
|
|
|
while (shortLen > 0) {
|
|
if (func(minBits[--shortLen], maxBits[--longLen]) === expFuncVal) {
|
|
outVal = outVal.plus(twoPower);
|
|
}
|
|
|
|
twoPower = twoPower.times(two);
|
|
}
|
|
|
|
while (longLen > 0) {
|
|
if (func(minSign, maxBits[--longLen]) === expFuncVal) {
|
|
outVal = outVal.plus(twoPower);
|
|
}
|
|
|
|
twoPower = twoPower.times(two);
|
|
}
|
|
|
|
BigNumber.config({
|
|
precision: prevPrec
|
|
});
|
|
|
|
if (expFuncVal === 0) {
|
|
outVal.s = -outVal.s;
|
|
}
|
|
|
|
return outVal;
|
|
}
|
|
/* Extracted from decimal.js, and edited to specialize. */
|
|
|
|
|
|
function decCoefficientToBinaryString(x) {
|
|
// Convert to string
|
|
var a = x.d; // array with digits
|
|
|
|
var r = a[0] + '';
|
|
|
|
for (var i = 1; i < a.length; ++i) {
|
|
var s = a[i] + '';
|
|
|
|
for (var z = 7 - s.length; z--;) {
|
|
s = '0' + s;
|
|
}
|
|
|
|
r += s;
|
|
}
|
|
|
|
var j = r.length;
|
|
|
|
while (r.charAt(j) === '0') {
|
|
j--;
|
|
}
|
|
|
|
var xe = x.e;
|
|
var str = r.slice(0, j + 1 || 1);
|
|
var strL = str.length;
|
|
|
|
if (xe > 0) {
|
|
if (++xe > strL) {
|
|
// Append zeros.
|
|
xe -= strL;
|
|
|
|
while (xe--) {
|
|
str += '0';
|
|
}
|
|
} else if (xe < strL) {
|
|
str = str.slice(0, xe) + '.' + str.slice(xe);
|
|
}
|
|
} // Convert from base 10 (decimal) to base 2
|
|
|
|
|
|
var arr = [0];
|
|
|
|
for (var _i2 = 0; _i2 < str.length;) {
|
|
var arrL = arr.length;
|
|
|
|
while (arrL--) {
|
|
arr[arrL] *= 10;
|
|
}
|
|
|
|
arr[0] += parseInt(str.charAt(_i2++)); // convert to int
|
|
|
|
for (var _j = 0; _j < arr.length; ++_j) {
|
|
if (arr[_j] > 1) {
|
|
if (arr[_j + 1] === null || arr[_j + 1] === undefined) {
|
|
arr[_j + 1] = 0;
|
|
}
|
|
|
|
arr[_j + 1] += arr[_j] >> 1;
|
|
arr[_j] &= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return arr.reverse();
|
|
}
|
|
/**
|
|
* Bitwise XOR for BigNumbers
|
|
*
|
|
* Special Cases:
|
|
* N ^ n = N
|
|
* n ^ 0 = n
|
|
* n ^ n = 0
|
|
* n ^ -1 = ~n
|
|
* I ^ n = I
|
|
* I ^ -n = -I
|
|
* I ^ -I = -1
|
|
* -I ^ n = -I
|
|
* -I ^ -n = I
|
|
*
|
|
* @param {BigNumber} x
|
|
* @param {BigNumber} y
|
|
* @return {BigNumber} Result of `x` ^ `y`, fully precise
|
|
*
|
|
*/
|
|
|
|
|
|
function bitXor(x, y) {
|
|
if (x.isFinite() && !x.isInteger() || y.isFinite() && !y.isInteger()) {
|
|
throw new Error('Integers expected in function bitXor');
|
|
}
|
|
|
|
var BigNumber = x.constructor;
|
|
|
|
if (x.isNaN() || y.isNaN()) {
|
|
return new BigNumber(NaN);
|
|
}
|
|
|
|
if (x.isZero()) {
|
|
return y;
|
|
}
|
|
|
|
if (y.isZero()) {
|
|
return x;
|
|
}
|
|
|
|
if (x.eq(y)) {
|
|
return new BigNumber(0);
|
|
}
|
|
|
|
var negOne = new BigNumber(-1);
|
|
|
|
if (x.eq(negOne)) {
|
|
return bitNotBigNumber(y);
|
|
}
|
|
|
|
if (y.eq(negOne)) {
|
|
return bitNotBigNumber(x);
|
|
}
|
|
|
|
if (!x.isFinite() || !y.isFinite()) {
|
|
if (!x.isFinite() && !y.isFinite()) {
|
|
return negOne;
|
|
}
|
|
|
|
return new BigNumber(x.isNegative() === y.isNegative() ? Infinity : -Infinity);
|
|
}
|
|
|
|
return bitwise(x, y, function (a, b) {
|
|
return a ^ b;
|
|
});
|
|
}
|
|
/**
|
|
* Bitwise left shift
|
|
*
|
|
* Special Cases:
|
|
* n << -n = N
|
|
* n << N = N
|
|
* N << n = N
|
|
* n << 0 = n
|
|
* 0 << n = 0
|
|
* I << I = N
|
|
* I << n = I
|
|
* n << I = I
|
|
*
|
|
* @param {BigNumber} x
|
|
* @param {BigNumber} y
|
|
* @return {BigNumber} Result of `x` << `y`
|
|
*
|
|
*/
|
|
|
|
|
|
function leftShiftBigNumber(x, y) {
|
|
if (x.isFinite() && !x.isInteger() || y.isFinite() && !y.isInteger()) {
|
|
throw new Error('Integers expected in function leftShift');
|
|
}
|
|
|
|
var BigNumber = x.constructor;
|
|
|
|
if (x.isNaN() || y.isNaN() || y.isNegative() && !y.isZero()) {
|
|
return new BigNumber(NaN);
|
|
}
|
|
|
|
if (x.isZero() || y.isZero()) {
|
|
return x;
|
|
}
|
|
|
|
if (!x.isFinite() && !y.isFinite()) {
|
|
return new BigNumber(NaN);
|
|
} // Math.pow(2, y) is fully precise for y < 55, and fast
|
|
|
|
|
|
if (y.lt(55)) {
|
|
return x.times(Math.pow(2, y.toNumber()) + '');
|
|
}
|
|
|
|
return x.times(new BigNumber(2).pow(y));
|
|
}
|
|
/*
|
|
* Special Cases:
|
|
* n >> -n = N
|
|
* n >> N = N
|
|
* N >> n = N
|
|
* I >> I = N
|
|
* n >> 0 = n
|
|
* I >> n = I
|
|
* -I >> n = -I
|
|
* -I >> I = -I
|
|
* n >> I = I
|
|
* -n >> I = -1
|
|
* 0 >> n = 0
|
|
*
|
|
* @param {BigNumber} value
|
|
* @param {BigNumber} value
|
|
* @return {BigNumber} Result of `x` >> `y`
|
|
*
|
|
*/
|
|
|
|
|
|
function rightArithShiftBigNumber(x, y) {
|
|
if (x.isFinite() && !x.isInteger() || y.isFinite() && !y.isInteger()) {
|
|
throw new Error('Integers expected in function rightArithShift');
|
|
}
|
|
|
|
var BigNumber = x.constructor;
|
|
|
|
if (x.isNaN() || y.isNaN() || y.isNegative() && !y.isZero()) {
|
|
return new BigNumber(NaN);
|
|
}
|
|
|
|
if (x.isZero() || y.isZero()) {
|
|
return x;
|
|
}
|
|
|
|
if (!y.isFinite()) {
|
|
if (x.isNegative()) {
|
|
return new BigNumber(-1);
|
|
}
|
|
|
|
if (!x.isFinite()) {
|
|
return new BigNumber(NaN);
|
|
}
|
|
|
|
return new BigNumber(0);
|
|
} // Math.pow(2, y) is fully precise for y < 55, and fast
|
|
|
|
|
|
if (y.lt(55)) {
|
|
return x.div(Math.pow(2, y.toNumber()) + '').floor();
|
|
}
|
|
|
|
return x.div(new BigNumber(2).pow(y)).floor();
|
|
} |