simple-squiggle/node_modules/mathjs/lib/cjs/function/probability/permutations.js

96 lines
2.6 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createPermutations = void 0;
var _number = require("../../utils/number.js");
var _product = require("../../utils/product.js");
var _factory = require("../../utils/factory.js");
var name = 'permutations';
var dependencies = ['typed', 'factorial'];
var createPermutations = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
var typed = _ref.typed,
factorial = _ref.factorial;
/**
* Compute the number of ways of obtaining an ordered subset of `k` elements
* from a set of `n` elements.
*
* Permutations only takes integer arguments.
* The following condition must be enforced: k <= n.
*
* Syntax:
*
* math.permutations(n)
* math.permutations(n, k)
*
* Examples:
*
* math.permutations(5) // 120
* math.permutations(5, 3) // 60
*
* See also:
*
* combinations, combinationsWithRep, factorial
*
* @param {number | BigNumber} n The number of objects in total
* @param {number | BigNumber} [k] The number of objects in the subset
* @return {number | BigNumber} The number of permutations
*/
return typed(name, {
'number | BigNumber': factorial,
'number, number': function numberNumber(n, k) {
if (!(0, _number.isInteger)(n) || n < 0) {
throw new TypeError('Positive integer value expected in function permutations');
}
if (!(0, _number.isInteger)(k) || k < 0) {
throw new TypeError('Positive integer value expected in function permutations');
}
if (k > n) {
throw new TypeError('second argument k must be less than or equal to first argument n');
} // Permute n objects, k at a time
return (0, _product.product)(n - k + 1, n);
},
'BigNumber, BigNumber': function BigNumberBigNumber(n, k) {
var result, i;
if (!isPositiveInteger(n) || !isPositiveInteger(k)) {
throw new TypeError('Positive integer value expected in function permutations');
}
if (k.gt(n)) {
throw new TypeError('second argument k must be less than or equal to first argument n');
}
var one = n.mul(0).add(1);
result = one;
for (i = n.minus(k).plus(1); i.lte(n); i = i.plus(1)) {
result = result.times(i);
}
return result;
} // TODO: implement support for collection in permutations
});
});
/**
* Test whether BigNumber n is a positive integer
* @param {BigNumber} n
* @returns {boolean} isPositiveInteger
*/
exports.createPermutations = createPermutations;
function isPositiveInteger(n) {
return n.isInteger() && n.gte(0);
}