simple-squiggle/node_modules/mathjs/lib/cjs/function/probability/kldivergence.js

93 lines
2.4 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createKldivergence = void 0;
var _factory = require("../../utils/factory.js");
var name = 'kldivergence';
var dependencies = ['typed', 'matrix', 'divide', 'sum', 'multiply', 'dotDivide', 'log', 'isNumeric'];
var createKldivergence = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
var typed = _ref.typed,
matrix = _ref.matrix,
divide = _ref.divide,
sum = _ref.sum,
multiply = _ref.multiply,
dotDivide = _ref.dotDivide,
log = _ref.log,
isNumeric = _ref.isNumeric;
/**
* Calculate the Kullback-Leibler (KL) divergence between two distributions
*
* Syntax:
*
* math.kldivergence(x, y)
*
* Examples:
*
* math.kldivergence([0.7,0.5,0.4], [0.2,0.9,0.5]) //returns 0.24376698773121153
*
*
* @param {Array | Matrix} q First vector
* @param {Array | Matrix} p Second vector
* @return {number} Returns distance between q and p
*/
return typed(name, {
'Array, Array': function ArrayArray(q, p) {
return _kldiv(matrix(q), matrix(p));
},
'Matrix, Array': function MatrixArray(q, p) {
return _kldiv(q, matrix(p));
},
'Array, Matrix': function ArrayMatrix(q, p) {
return _kldiv(matrix(q), p);
},
'Matrix, Matrix': function MatrixMatrix(q, p) {
return _kldiv(q, p);
}
});
function _kldiv(q, p) {
var plength = p.size().length;
var qlength = q.size().length;
if (plength > 1) {
throw new Error('first object must be one dimensional');
}
if (qlength > 1) {
throw new Error('second object must be one dimensional');
}
if (plength !== qlength) {
throw new Error('Length of two vectors must be equal');
} // Before calculation, apply normalization
var sumq = sum(q);
if (sumq === 0) {
throw new Error('Sum of elements in first object must be non zero');
}
var sump = sum(p);
if (sump === 0) {
throw new Error('Sum of elements in second object must be non zero');
}
var qnorm = divide(q, sum(q));
var pnorm = divide(p, sum(p));
var result = sum(multiply(qnorm, log(dotDivide(qnorm, pnorm))));
if (isNumeric(result)) {
return result;
} else {
return Number.NaN;
}
}
});
exports.createKldivergence = createKldivergence;