124 lines
3.5 KiB
JavaScript
124 lines
3.5 KiB
JavaScript
"use strict";
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.createNthRoots = void 0;
|
|
|
|
var _factory = require("../../utils/factory.js");
|
|
|
|
var name = 'nthRoots';
|
|
var dependencies = ['config', 'typed', 'divideScalar', 'Complex'];
|
|
var createNthRoots = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
|
|
var typed = _ref.typed,
|
|
config = _ref.config,
|
|
divideScalar = _ref.divideScalar,
|
|
Complex = _ref.Complex;
|
|
|
|
/**
|
|
* Each function here returns a real multiple of i as a Complex value.
|
|
* @param {number} val
|
|
* @return {Complex} val, i*val, -val or -i*val for index 0, 1, 2, 3
|
|
*/
|
|
// This is used to fix float artifacts for zero-valued components.
|
|
var _calculateExactResult = [function realPos(val) {
|
|
return new Complex(val, 0);
|
|
}, function imagPos(val) {
|
|
return new Complex(0, val);
|
|
}, function realNeg(val) {
|
|
return new Complex(-val, 0);
|
|
}, function imagNeg(val) {
|
|
return new Complex(0, -val);
|
|
}];
|
|
/**
|
|
* Calculate the nth root of a Complex Number a using De Movire's Theorem.
|
|
* @param {Complex} a
|
|
* @param {number} root
|
|
* @return {Array} array of n Complex Roots
|
|
*/
|
|
|
|
function _nthComplexRoots(a, root) {
|
|
if (root < 0) throw new Error('Root must be greater than zero');
|
|
if (root === 0) throw new Error('Root must be non-zero');
|
|
if (root % 1 !== 0) throw new Error('Root must be an integer');
|
|
if (a === 0 || a.abs() === 0) return [new Complex(0, 0)];
|
|
var aIsNumeric = typeof a === 'number';
|
|
var offset; // determine the offset (argument of a)/(pi/2)
|
|
|
|
if (aIsNumeric || a.re === 0 || a.im === 0) {
|
|
if (aIsNumeric) {
|
|
offset = 2 * +(a < 0); // numeric value on the real axis
|
|
} else if (a.im === 0) {
|
|
offset = 2 * +(a.re < 0); // complex value on the real axis
|
|
} else {
|
|
offset = 2 * +(a.im < 0) + 1; // complex value on the imaginary axis
|
|
}
|
|
}
|
|
|
|
var arg = a.arg();
|
|
var abs = a.abs();
|
|
var roots = [];
|
|
var r = Math.pow(abs, 1 / root);
|
|
|
|
for (var k = 0; k < root; k++) {
|
|
var halfPiFactor = (offset + 4 * k) / root;
|
|
/**
|
|
* If (offset + 4*k)/root is an integral multiple of pi/2
|
|
* then we can produce a more exact result.
|
|
*/
|
|
|
|
if (halfPiFactor === Math.round(halfPiFactor)) {
|
|
roots.push(_calculateExactResult[halfPiFactor % 4](r));
|
|
continue;
|
|
}
|
|
|
|
roots.push(new Complex({
|
|
r: r,
|
|
phi: (arg + 2 * Math.PI * k) / root
|
|
}));
|
|
}
|
|
|
|
return roots;
|
|
}
|
|
/**
|
|
* Calculate the nth roots of a value.
|
|
* An nth root of a positive real number A,
|
|
* is a positive real solution of the equation "x^root = A".
|
|
* This function returns an array of complex values.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.nthRoots(x)
|
|
* math.nthRoots(x, root)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.nthRoots(1)
|
|
* // returns [
|
|
* // {re: 1, im: 0},
|
|
* // {re: -1, im: 0}
|
|
* // ]
|
|
* nthRoots(1, 3)
|
|
* // returns [
|
|
* // { re: 1, im: 0 },
|
|
* // { re: -0.4999999999999998, im: 0.8660254037844387 },
|
|
* // { re: -0.5000000000000004, im: -0.8660254037844385 }
|
|
* ]
|
|
*
|
|
* See also:
|
|
*
|
|
* nthRoot, pow, sqrt
|
|
*
|
|
* @param {number | BigNumber | Fraction | Complex} x Number to be rounded
|
|
* @return {number | BigNumber | Fraction | Complex} Rounded value
|
|
*/
|
|
|
|
|
|
return typed(name, {
|
|
Complex: function Complex(x) {
|
|
return _nthComplexRoots(x, 2);
|
|
},
|
|
'Complex, number': _nthComplexRoots
|
|
});
|
|
});
|
|
exports.createNthRoots = createNthRoots; |