simple-squiggle/node_modules/mathjs/lib/cjs/function/algebra/sparse/csLu.js

206 lines
5.1 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createCsLu = void 0;
var _factory = require("../../../utils/factory.js");
var _csSpsolve = require("./csSpsolve.js");
var name = 'csLu';
var dependencies = ['abs', 'divideScalar', 'multiply', 'subtract', 'larger', 'largerEq', 'SparseMatrix'];
var createCsLu = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
var abs = _ref.abs,
divideScalar = _ref.divideScalar,
multiply = _ref.multiply,
subtract = _ref.subtract,
larger = _ref.larger,
largerEq = _ref.largerEq,
SparseMatrix = _ref.SparseMatrix;
var csSpsolve = (0, _csSpsolve.createCsSpsolve)({
divideScalar: divideScalar,
multiply: multiply,
subtract: subtract
});
/**
* Computes the numeric LU factorization of the sparse matrix A. Implements a Left-looking LU factorization
* algorithm that computes L and U one column at a tume. At the kth step, it access columns 1 to k-1 of L
* and column k of A. Given the fill-reducing column ordering q (see parameter s) computes L, U and pinv so
* L * U = A(p, q), where p is the inverse of pinv.
*
* @param {Matrix} m The A Matrix to factorize
* @param {Object} s The symbolic analysis from csSqr(). Provides the fill-reducing
* column ordering q
* @param {Number} tol Partial pivoting threshold (1 for partial pivoting)
*
* @return {Number} The numeric LU factorization of A or null
*
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
*/
return function csLu(m, s, tol) {
// validate input
if (!m) {
return null;
} // m arrays
var size = m._size; // columns
var n = size[1]; // symbolic analysis result
var q;
var lnz = 100;
var unz = 100; // update symbolic analysis parameters
if (s) {
q = s.q;
lnz = s.lnz || lnz;
unz = s.unz || unz;
} // L arrays
var lvalues = []; // (lnz)
var lindex = []; // (lnz)
var lptr = []; // (n + 1)
// L
var L = new SparseMatrix({
values: lvalues,
index: lindex,
ptr: lptr,
size: [n, n]
}); // U arrays
var uvalues = []; // (unz)
var uindex = []; // (unz)
var uptr = []; // (n + 1)
// U
var U = new SparseMatrix({
values: uvalues,
index: uindex,
ptr: uptr,
size: [n, n]
}); // inverse of permutation vector
var pinv = []; // (n)
// vars
var i, p; // allocate arrays
var x = []; // (n)
var xi = []; // (2 * n)
// initialize variables
for (i = 0; i < n; i++) {
// clear workspace
x[i] = 0; // no rows pivotal yet
pinv[i] = -1; // no cols of L yet
lptr[i + 1] = 0;
} // reset number of nonzero elements in L and U
lnz = 0;
unz = 0; // compute L(:,k) and U(:,k)
for (var k = 0; k < n; k++) {
// update ptr
lptr[k] = lnz;
uptr[k] = unz; // apply column permutations if needed
var col = q ? q[k] : k; // solve triangular system, x = L\A(:,col)
var top = csSpsolve(L, m, col, xi, x, pinv, 1); // find pivot
var ipiv = -1;
var a = -1; // loop xi[] from top -> n
for (p = top; p < n; p++) {
// x[i] is nonzero
i = xi[p]; // check row i is not yet pivotal
if (pinv[i] < 0) {
// absolute value of x[i]
var xabs = abs(x[i]); // check absoulte value is greater than pivot value
if (larger(xabs, a)) {
// largest pivot candidate so far
a = xabs;
ipiv = i;
}
} else {
// x(i) is the entry U(pinv[i],k)
uindex[unz] = pinv[i];
uvalues[unz++] = x[i];
}
} // validate we found a valid pivot
if (ipiv === -1 || a <= 0) {
return null;
} // update actual pivot column, give preference to diagonal value
if (pinv[col] < 0 && largerEq(abs(x[col]), multiply(a, tol))) {
ipiv = col;
} // the chosen pivot
var pivot = x[ipiv]; // last entry in U(:,k) is U(k,k)
uindex[unz] = k;
uvalues[unz++] = pivot; // ipiv is the kth pivot row
pinv[ipiv] = k; // first entry in L(:,k) is L(k,k) = 1
lindex[lnz] = ipiv;
lvalues[lnz++] = 1; // L(k+1:n,k) = x / pivot
for (p = top; p < n; p++) {
// row
i = xi[p]; // check x(i) is an entry in L(:,k)
if (pinv[i] < 0) {
// save unpermuted row in L
lindex[lnz] = i; // scale pivot column
lvalues[lnz++] = divideScalar(x[i], pivot);
} // x[0..n-1] = 0 for next k
x[i] = 0;
}
} // update ptr
lptr[n] = lnz;
uptr[n] = unz; // fix row indices of L for final pinv
for (p = 0; p < lnz; p++) {
lindex[p] = pinv[lindex[p]];
} // trim arrays
lvalues.splice(lnz, lvalues.length - lnz);
lindex.splice(lnz, lindex.length - lnz);
uvalues.splice(unz, uvalues.length - unz);
uindex.splice(unz, uindex.length - unz); // return LU factor
return {
L: L,
U: U,
pinv: pinv
};
};
});
exports.createCsLu = createCsLu;