simple-squiggle/node_modules/mathjs/lib/cjs/function/algebra/decomposition/qr.js

246 lines
6.8 KiB
JavaScript

"use strict";
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createQr = void 0;
var _extends2 = _interopRequireDefault(require("@babel/runtime/helpers/extends"));
var _factory = require("../../../utils/factory.js");
var name = 'qr';
var dependencies = ['typed', 'matrix', 'zeros', 'identity', 'isZero', 'equal', 'sign', 'sqrt', 'conj', 'unaryMinus', 'addScalar', 'divideScalar', 'multiplyScalar', 'subtract', 'complex'];
var createQr = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
var typed = _ref.typed,
matrix = _ref.matrix,
zeros = _ref.zeros,
identity = _ref.identity,
isZero = _ref.isZero,
equal = _ref.equal,
sign = _ref.sign,
sqrt = _ref.sqrt,
conj = _ref.conj,
unaryMinus = _ref.unaryMinus,
addScalar = _ref.addScalar,
divideScalar = _ref.divideScalar,
multiplyScalar = _ref.multiplyScalar,
subtract = _ref.subtract,
complex = _ref.complex;
/**
* Calculate the Matrix QR decomposition. Matrix `A` is decomposed in
* two matrices (`Q`, `R`) where `Q` is an
* orthogonal matrix and `R` is an upper triangular matrix.
*
* Syntax:
*
* math.qr(A)
*
* Example:
*
* const m = [
* [1, -1, 4],
* [1, 4, -2],
* [1, 4, 2],
* [1, -1, 0]
* ]
* const result = math.qr(m)
* // r = {
* // Q: [
* // [0.5, -0.5, 0.5],
* // [0.5, 0.5, -0.5],
* // [0.5, 0.5, 0.5],
* // [0.5, -0.5, -0.5],
* // ],
* // R: [
* // [2, 3, 2],
* // [0, 5, -2],
* // [0, 0, 4],
* // [0, 0, 0]
* // ]
* // }
*
* See also:
*
* lup, lusolve
*
* @param {Matrix | Array} A A two dimensional matrix or array
* for which to get the QR decomposition.
*
* @return {{Q: Array | Matrix, R: Array | Matrix}} Q: the orthogonal
* matrix and R: the upper triangular matrix
*/
return (0, _extends2.default)(typed(name, {
DenseMatrix: function DenseMatrix(m) {
return _denseQR(m);
},
SparseMatrix: function SparseMatrix(m) {
return _sparseQR(m);
},
Array: function Array(a) {
// create dense matrix from array
var m = matrix(a); // lup, use matrix implementation
var r = _denseQR(m); // result
return {
Q: r.Q.valueOf(),
R: r.R.valueOf()
};
}
}), {
_denseQRimpl: _denseQRimpl
});
function _denseQRimpl(m) {
// rows & columns (m x n)
var rows = m._size[0]; // m
var cols = m._size[1]; // n
var Q = identity([rows], 'dense');
var Qdata = Q._data;
var R = m.clone();
var Rdata = R._data; // vars
var i, j, k;
var w = zeros([rows], '');
for (k = 0; k < Math.min(cols, rows); ++k) {
/*
* **k-th Household matrix**
*
* The matrix I - 2*v*transpose(v)
* x = first column of A
* x1 = first element of x
* alpha = x1 / |x1| * |x|
* e1 = tranpose([1, 0, 0, ...])
* u = x - alpha * e1
* v = u / |u|
*
* Household matrix = I - 2 * v * tranpose(v)
*
* * Initially Q = I and R = A.
* * Household matrix is a reflection in a plane normal to v which
* will zero out all but the top right element in R.
* * Appplying reflection to both Q and R will not change product.
* * Repeat this process on the (1,1) minor to get R as an upper
* triangular matrix.
* * Reflections leave the magnitude of the columns of Q unchanged
* so Q remains othoganal.
*
*/
var pivot = Rdata[k][k];
var sgn = unaryMinus(equal(pivot, 0) ? 1 : sign(pivot));
var conjSgn = conj(sgn);
var alphaSquared = 0;
for (i = k; i < rows; i++) {
alphaSquared = addScalar(alphaSquared, multiplyScalar(Rdata[i][k], conj(Rdata[i][k])));
}
var alpha = multiplyScalar(sgn, sqrt(alphaSquared));
if (!isZero(alpha)) {
// first element in vector u
var u1 = subtract(pivot, alpha); // w = v * u1 / |u| (only elements k to (rows-1) are used)
w[k] = 1;
for (i = k + 1; i < rows; i++) {
w[i] = divideScalar(Rdata[i][k], u1);
} // tau = - conj(u1 / alpha)
var tau = unaryMinus(conj(divideScalar(u1, alpha)));
var s = void 0;
/*
* tau and w have been choosen so that
*
* 2 * v * tranpose(v) = tau * w * tranpose(w)
*/
/*
* -- calculate R = R - tau * w * tranpose(w) * R --
* Only do calculation with rows k to (rows-1)
* Additionally columns 0 to (k-1) will not be changed by this
* multiplication so do not bother recalculating them
*/
for (j = k; j < cols; j++) {
s = 0.0; // calculate jth element of [tranpose(w) * R]
for (i = k; i < rows; i++) {
s = addScalar(s, multiplyScalar(conj(w[i]), Rdata[i][j]));
} // calculate the jth element of [tau * transpose(w) * R]
s = multiplyScalar(s, tau);
for (i = k; i < rows; i++) {
Rdata[i][j] = multiplyScalar(subtract(Rdata[i][j], multiplyScalar(w[i], s)), conjSgn);
}
}
/*
* -- calculate Q = Q - tau * Q * w * transpose(w) --
* Q is a square matrix (rows x rows)
* Only do calculation with columns k to (rows-1)
* Additionally rows 0 to (k-1) will not be changed by this
* multiplication so do not bother recalculating them
*/
for (i = 0; i < rows; i++) {
s = 0.0; // calculate ith element of [Q * w]
for (j = k; j < rows; j++) {
s = addScalar(s, multiplyScalar(Qdata[i][j], w[j]));
} // calculate the ith element of [tau * Q * w]
s = multiplyScalar(s, tau);
for (j = k; j < rows; ++j) {
Qdata[i][j] = divideScalar(subtract(Qdata[i][j], multiplyScalar(s, conj(w[j]))), conjSgn);
}
}
}
} // return matrices
return {
Q: Q,
R: R,
toString: function toString() {
return 'Q: ' + this.Q.toString() + '\nR: ' + this.R.toString();
}
};
}
function _denseQR(m) {
var ret = _denseQRimpl(m);
var Rdata = ret.R._data;
if (m._data.length > 0) {
var zero = Rdata[0][0].type === 'Complex' ? complex(0) : 0;
for (var i = 0; i < Rdata.length; ++i) {
for (var j = 0; j < i && j < (Rdata[0] || []).length; ++j) {
Rdata[i][j] = zero;
}
}
}
return ret;
}
function _sparseQR(m) {
throw new Error('qr not implemented for sparse matrices yet');
}
});
exports.createQr = createQr;