421 lines
10 KiB
JavaScript
421 lines
10 KiB
JavaScript
"use strict";
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.createLup = void 0;
|
|
|
|
var _object = require("../../../utils/object.js");
|
|
|
|
var _factory = require("../../../utils/factory.js");
|
|
|
|
var name = 'lup';
|
|
var dependencies = ['typed', 'matrix', 'abs', 'addScalar', 'divideScalar', 'multiplyScalar', 'subtract', 'larger', 'equalScalar', 'unaryMinus', 'DenseMatrix', 'SparseMatrix', 'Spa'];
|
|
var createLup = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
|
|
var typed = _ref.typed,
|
|
matrix = _ref.matrix,
|
|
abs = _ref.abs,
|
|
addScalar = _ref.addScalar,
|
|
divideScalar = _ref.divideScalar,
|
|
multiplyScalar = _ref.multiplyScalar,
|
|
subtract = _ref.subtract,
|
|
larger = _ref.larger,
|
|
equalScalar = _ref.equalScalar,
|
|
unaryMinus = _ref.unaryMinus,
|
|
DenseMatrix = _ref.DenseMatrix,
|
|
SparseMatrix = _ref.SparseMatrix,
|
|
Spa = _ref.Spa;
|
|
|
|
/**
|
|
* Calculate the Matrix LU decomposition with partial pivoting. Matrix `A` is decomposed in two matrices (`L`, `U`) and a
|
|
* row permutation vector `p` where `A[p,:] = L * U`
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.lup(A)
|
|
*
|
|
* Example:
|
|
*
|
|
* const m = [[2, 1], [1, 4]]
|
|
* const r = math.lup(m)
|
|
* // r = {
|
|
* // L: [[1, 0], [0.5, 1]],
|
|
* // U: [[2, 1], [0, 3.5]],
|
|
* // P: [0, 1]
|
|
* // }
|
|
*
|
|
* See also:
|
|
*
|
|
* slu, lsolve, lusolve, usolve
|
|
*
|
|
* @param {Matrix | Array} A A two dimensional matrix or array for which to get the LUP decomposition.
|
|
*
|
|
* @return {{L: Array | Matrix, U: Array | Matrix, P: Array.<number>}} The lower triangular matrix, the upper triangular matrix and the permutation matrix.
|
|
*/
|
|
return typed(name, {
|
|
DenseMatrix: function DenseMatrix(m) {
|
|
return _denseLUP(m);
|
|
},
|
|
SparseMatrix: function SparseMatrix(m) {
|
|
return _sparseLUP(m);
|
|
},
|
|
Array: function Array(a) {
|
|
// create dense matrix from array
|
|
var m = matrix(a); // lup, use matrix implementation
|
|
|
|
var r = _denseLUP(m); // result
|
|
|
|
|
|
return {
|
|
L: r.L.valueOf(),
|
|
U: r.U.valueOf(),
|
|
p: r.p
|
|
};
|
|
}
|
|
});
|
|
|
|
function _denseLUP(m) {
|
|
// rows & columns
|
|
var rows = m._size[0];
|
|
var columns = m._size[1]; // minimum rows and columns
|
|
|
|
var n = Math.min(rows, columns); // matrix array, clone original data
|
|
|
|
var data = (0, _object.clone)(m._data); // l matrix arrays
|
|
|
|
var ldata = [];
|
|
var lsize = [rows, n]; // u matrix arrays
|
|
|
|
var udata = [];
|
|
var usize = [n, columns]; // vars
|
|
|
|
var i, j, k; // permutation vector
|
|
|
|
var p = [];
|
|
|
|
for (i = 0; i < rows; i++) {
|
|
p[i] = i;
|
|
} // loop columns
|
|
|
|
|
|
for (j = 0; j < columns; j++) {
|
|
// skip first column in upper triangular matrix
|
|
if (j > 0) {
|
|
// loop rows
|
|
for (i = 0; i < rows; i++) {
|
|
// min i,j
|
|
var min = Math.min(i, j); // v[i, j]
|
|
|
|
var s = 0; // loop up to min
|
|
|
|
for (k = 0; k < min; k++) {
|
|
// s = l[i, k] - data[k, j]
|
|
s = addScalar(s, multiplyScalar(data[i][k], data[k][j]));
|
|
}
|
|
|
|
data[i][j] = subtract(data[i][j], s);
|
|
}
|
|
} // row with larger value in cvector, row >= j
|
|
|
|
|
|
var pi = j;
|
|
var pabsv = 0;
|
|
var vjj = 0; // loop rows
|
|
|
|
for (i = j; i < rows; i++) {
|
|
// data @ i, j
|
|
var v = data[i][j]; // absolute value
|
|
|
|
var absv = abs(v); // value is greater than pivote value
|
|
|
|
if (larger(absv, pabsv)) {
|
|
// store row
|
|
pi = i; // update max value
|
|
|
|
pabsv = absv; // value @ [j, j]
|
|
|
|
vjj = v;
|
|
}
|
|
} // swap rows (j <-> pi)
|
|
|
|
|
|
if (j !== pi) {
|
|
// swap values j <-> pi in p
|
|
p[j] = [p[pi], p[pi] = p[j]][0]; // swap j <-> pi in data
|
|
|
|
DenseMatrix._swapRows(j, pi, data);
|
|
} // check column is in lower triangular matrix
|
|
|
|
|
|
if (j < rows) {
|
|
// loop rows (lower triangular matrix)
|
|
for (i = j + 1; i < rows; i++) {
|
|
// value @ i, j
|
|
var vij = data[i][j];
|
|
|
|
if (!equalScalar(vij, 0)) {
|
|
// update data
|
|
data[i][j] = divideScalar(data[i][j], vjj);
|
|
}
|
|
}
|
|
}
|
|
} // loop columns
|
|
|
|
|
|
for (j = 0; j < columns; j++) {
|
|
// loop rows
|
|
for (i = 0; i < rows; i++) {
|
|
// initialize row in arrays
|
|
if (j === 0) {
|
|
// check row exists in upper triangular matrix
|
|
if (i < columns) {
|
|
// U
|
|
udata[i] = [];
|
|
} // L
|
|
|
|
|
|
ldata[i] = [];
|
|
} // check we are in the upper triangular matrix
|
|
|
|
|
|
if (i < j) {
|
|
// check row exists in upper triangular matrix
|
|
if (i < columns) {
|
|
// U
|
|
udata[i][j] = data[i][j];
|
|
} // check column exists in lower triangular matrix
|
|
|
|
|
|
if (j < rows) {
|
|
// L
|
|
ldata[i][j] = 0;
|
|
}
|
|
|
|
continue;
|
|
} // diagonal value
|
|
|
|
|
|
if (i === j) {
|
|
// check row exists in upper triangular matrix
|
|
if (i < columns) {
|
|
// U
|
|
udata[i][j] = data[i][j];
|
|
} // check column exists in lower triangular matrix
|
|
|
|
|
|
if (j < rows) {
|
|
// L
|
|
ldata[i][j] = 1;
|
|
}
|
|
|
|
continue;
|
|
} // check row exists in upper triangular matrix
|
|
|
|
|
|
if (i < columns) {
|
|
// U
|
|
udata[i][j] = 0;
|
|
} // check column exists in lower triangular matrix
|
|
|
|
|
|
if (j < rows) {
|
|
// L
|
|
ldata[i][j] = data[i][j];
|
|
}
|
|
}
|
|
} // l matrix
|
|
|
|
|
|
var l = new DenseMatrix({
|
|
data: ldata,
|
|
size: lsize
|
|
}); // u matrix
|
|
|
|
var u = new DenseMatrix({
|
|
data: udata,
|
|
size: usize
|
|
}); // p vector
|
|
|
|
var pv = [];
|
|
|
|
for (i = 0, n = p.length; i < n; i++) {
|
|
pv[p[i]] = i;
|
|
} // return matrices
|
|
|
|
|
|
return {
|
|
L: l,
|
|
U: u,
|
|
p: pv,
|
|
toString: function toString() {
|
|
return 'L: ' + this.L.toString() + '\nU: ' + this.U.toString() + '\nP: ' + this.p;
|
|
}
|
|
};
|
|
}
|
|
|
|
function _sparseLUP(m) {
|
|
// rows & columns
|
|
var rows = m._size[0];
|
|
var columns = m._size[1]; // minimum rows and columns
|
|
|
|
var n = Math.min(rows, columns); // matrix arrays (will not be modified, thanks to permutation vector)
|
|
|
|
var values = m._values;
|
|
var index = m._index;
|
|
var ptr = m._ptr; // l matrix arrays
|
|
|
|
var lvalues = [];
|
|
var lindex = [];
|
|
var lptr = [];
|
|
var lsize = [rows, n]; // u matrix arrays
|
|
|
|
var uvalues = [];
|
|
var uindex = [];
|
|
var uptr = [];
|
|
var usize = [n, columns]; // vars
|
|
|
|
var i, j, k; // permutation vectors, (current index -> original index) and (original index -> current index)
|
|
|
|
var pvCo = [];
|
|
var pvOc = [];
|
|
|
|
for (i = 0; i < rows; i++) {
|
|
pvCo[i] = i;
|
|
pvOc[i] = i;
|
|
} // swap indices in permutation vectors (condition x < y)!
|
|
|
|
|
|
var swapIndeces = function swapIndeces(x, y) {
|
|
// find pv indeces getting data from x and y
|
|
var kx = pvOc[x];
|
|
var ky = pvOc[y]; // update permutation vector current -> original
|
|
|
|
pvCo[kx] = y;
|
|
pvCo[ky] = x; // update permutation vector original -> current
|
|
|
|
pvOc[x] = ky;
|
|
pvOc[y] = kx;
|
|
}; // loop columns
|
|
|
|
|
|
var _loop = function _loop() {
|
|
// sparse accumulator
|
|
var spa = new Spa(); // check lower triangular matrix has a value @ column j
|
|
|
|
if (j < rows) {
|
|
// update ptr
|
|
lptr.push(lvalues.length); // first value in j column for lower triangular matrix
|
|
|
|
lvalues.push(1);
|
|
lindex.push(j);
|
|
} // update ptr
|
|
|
|
|
|
uptr.push(uvalues.length); // k0 <= k < k1 where k0 = _ptr[j] && k1 = _ptr[j+1]
|
|
|
|
var k0 = ptr[j];
|
|
var k1 = ptr[j + 1]; // copy column j into sparse accumulator
|
|
|
|
for (k = k0; k < k1; k++) {
|
|
// row
|
|
i = index[k]; // copy column values into sparse accumulator (use permutation vector)
|
|
|
|
spa.set(pvCo[i], values[k]);
|
|
} // skip first column in upper triangular matrix
|
|
|
|
|
|
if (j > 0) {
|
|
// loop rows in column j (above diagonal)
|
|
spa.forEach(0, j - 1, function (k, vkj) {
|
|
// loop rows in column k (L)
|
|
SparseMatrix._forEachRow(k, lvalues, lindex, lptr, function (i, vik) {
|
|
// check row is below k
|
|
if (i > k) {
|
|
// update spa value
|
|
spa.accumulate(i, unaryMinus(multiplyScalar(vik, vkj)));
|
|
}
|
|
});
|
|
});
|
|
} // row with larger value in spa, row >= j
|
|
|
|
|
|
var pi = j;
|
|
var vjj = spa.get(j);
|
|
var pabsv = abs(vjj); // loop values in spa (order by row, below diagonal)
|
|
|
|
spa.forEach(j + 1, rows - 1, function (x, v) {
|
|
// absolute value
|
|
var absv = abs(v); // value is greater than pivote value
|
|
|
|
if (larger(absv, pabsv)) {
|
|
// store row
|
|
pi = x; // update max value
|
|
|
|
pabsv = absv; // value @ [j, j]
|
|
|
|
vjj = v;
|
|
}
|
|
}); // swap rows (j <-> pi)
|
|
|
|
if (j !== pi) {
|
|
// swap values j <-> pi in L
|
|
SparseMatrix._swapRows(j, pi, lsize[1], lvalues, lindex, lptr); // swap values j <-> pi in U
|
|
|
|
|
|
SparseMatrix._swapRows(j, pi, usize[1], uvalues, uindex, uptr); // swap values in spa
|
|
|
|
|
|
spa.swap(j, pi); // update permutation vector (swap values @ j, pi)
|
|
|
|
swapIndeces(j, pi);
|
|
} // loop values in spa (order by row)
|
|
|
|
|
|
spa.forEach(0, rows - 1, function (x, v) {
|
|
// check we are above diagonal
|
|
if (x <= j) {
|
|
// update upper triangular matrix
|
|
uvalues.push(v);
|
|
uindex.push(x);
|
|
} else {
|
|
// update value
|
|
v = divideScalar(v, vjj); // check value is non zero
|
|
|
|
if (!equalScalar(v, 0)) {
|
|
// update lower triangular matrix
|
|
lvalues.push(v);
|
|
lindex.push(x);
|
|
}
|
|
}
|
|
});
|
|
};
|
|
|
|
for (j = 0; j < columns; j++) {
|
|
_loop();
|
|
} // update ptrs
|
|
|
|
|
|
uptr.push(uvalues.length);
|
|
lptr.push(lvalues.length); // return matrices
|
|
|
|
return {
|
|
L: new SparseMatrix({
|
|
values: lvalues,
|
|
index: lindex,
|
|
ptr: lptr,
|
|
size: lsize
|
|
}),
|
|
U: new SparseMatrix({
|
|
values: uvalues,
|
|
index: uindex,
|
|
ptr: uptr,
|
|
size: usize
|
|
}),
|
|
p: pvCo,
|
|
toString: function toString() {
|
|
return 'L: ' + this.L.toString() + '\nU: ' + this.U.toString() + '\nP: ' + this.p;
|
|
}
|
|
};
|
|
}
|
|
});
|
|
exports.createLup = createLup; |