792 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			792 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| "use strict";
 | ||
| 
 | ||
| var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
 | ||
| 
 | ||
| Object.defineProperty(exports, "__esModule", {
 | ||
|   value: true
 | ||
| });
 | ||
| exports.createComplexEigs = createComplexEigs;
 | ||
| 
 | ||
| var _toConsumableArray2 = _interopRequireDefault(require("@babel/runtime/helpers/toConsumableArray"));
 | ||
| 
 | ||
| var _object = require("../../../utils/object.js");
 | ||
| 
 | ||
| function _createForOfIteratorHelper(o, allowArrayLike) { var it = typeof Symbol !== "undefined" && o[Symbol.iterator] || o["@@iterator"]; if (!it) { if (Array.isArray(o) || (it = _unsupportedIterableToArray(o)) || allowArrayLike && o && typeof o.length === "number") { if (it) o = it; var i = 0; var F = function F() {}; return { s: F, n: function n() { if (i >= o.length) return { done: true }; return { done: false, value: o[i++] }; }, e: function e(_e) { throw _e; }, f: F }; } throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } var normalCompletion = true, didErr = false, err; return { s: function s() { it = it.call(o); }, n: function n() { var step = it.next(); normalCompletion = step.done; return step; }, e: function e(_e2) { didErr = true; err = _e2; }, f: function f() { try { if (!normalCompletion && it.return != null) it.return(); } finally { if (didErr) throw err; } } }; }
 | ||
| 
 | ||
| function _unsupportedIterableToArray(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray(o, minLen); }
 | ||
| 
 | ||
| function _arrayLikeToArray(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) { arr2[i] = arr[i]; } return arr2; }
 | ||
| 
 | ||
| function createComplexEigs(_ref) {
 | ||
|   var addScalar = _ref.addScalar,
 | ||
|       subtract = _ref.subtract,
 | ||
|       flatten = _ref.flatten,
 | ||
|       multiply = _ref.multiply,
 | ||
|       multiplyScalar = _ref.multiplyScalar,
 | ||
|       divideScalar = _ref.divideScalar,
 | ||
|       sqrt = _ref.sqrt,
 | ||
|       abs = _ref.abs,
 | ||
|       bignumber = _ref.bignumber,
 | ||
|       diag = _ref.diag,
 | ||
|       inv = _ref.inv,
 | ||
|       qr = _ref.qr,
 | ||
|       usolve = _ref.usolve,
 | ||
|       usolveAll = _ref.usolveAll,
 | ||
|       equal = _ref.equal,
 | ||
|       complex = _ref.complex,
 | ||
|       larger = _ref.larger,
 | ||
|       smaller = _ref.smaller,
 | ||
|       matrixFromColumns = _ref.matrixFromColumns,
 | ||
|       dot = _ref.dot;
 | ||
| 
 | ||
|   /**
 | ||
|    * @param {number[][]} arr the matrix to find eigenvalues of
 | ||
|    * @param {number} N size of the matrix
 | ||
|    * @param {number|BigNumber} prec precision, anything lower will be considered zero
 | ||
|    * @param {'number'|'BigNumber'|'Complex'} type
 | ||
|    * @param {boolean} findVectors should we find eigenvectors?
 | ||
|    *
 | ||
|    * @returns {{ values: number[], vectors: number[][] }}
 | ||
|    */
 | ||
|   function complexEigs(arr, N, prec, type, findVectors) {
 | ||
|     if (findVectors === undefined) {
 | ||
|       findVectors = true;
 | ||
|     } // TODO check if any row/col are zero except the diagonal
 | ||
|     // make sure corresponding rows and columns have similar magnitude
 | ||
|     // important because of numerical stability
 | ||
|     // MODIFIES arr by side effect!
 | ||
| 
 | ||
| 
 | ||
|     var R = balance(arr, N, prec, type, findVectors); // R is the row transformation matrix
 | ||
|     // arr = A' = R A R⁻¹, A is the original matrix
 | ||
|     // (if findVectors is false, R is undefined)
 | ||
|     // (And so to return to original matrix: A = R⁻¹ arr R)
 | ||
|     // TODO if magnitudes of elements vary over many orders,
 | ||
|     // move greatest elements to the top left corner
 | ||
|     // using similarity transformations, reduce the matrix
 | ||
|     // to Hessenberg form (upper triangular plus one subdiagonal row)
 | ||
|     // updates the transformation matrix R with new row operationsq
 | ||
|     // MODIFIES arr by side effect!
 | ||
| 
 | ||
|     reduceToHessenberg(arr, N, prec, type, findVectors, R); // still true that original A = R⁻¹ arr R)
 | ||
|     // find eigenvalues
 | ||
| 
 | ||
|     var _iterateUntilTriangul = iterateUntilTriangular(arr, N, prec, type, findVectors),
 | ||
|         values = _iterateUntilTriangul.values,
 | ||
|         C = _iterateUntilTriangul.C; // values is the list of eigenvalues, C is the column
 | ||
|     // transformation matrix that transforms arr, the hessenberg
 | ||
|     // matrix, to upper triangular
 | ||
|     // (So U = C⁻¹ arr C and the relationship between current arr
 | ||
|     // and original A is unchanged.)
 | ||
| 
 | ||
| 
 | ||
|     var vectors;
 | ||
| 
 | ||
|     if (findVectors) {
 | ||
|       vectors = findEigenvectors(arr, N, C, R, values, prec, type);
 | ||
|       vectors = matrixFromColumns.apply(void 0, (0, _toConsumableArray2.default)(vectors));
 | ||
|     }
 | ||
| 
 | ||
|     return {
 | ||
|       values: values,
 | ||
|       vectors: vectors
 | ||
|     };
 | ||
|   }
 | ||
|   /**
 | ||
|    * @param {number[][]} arr
 | ||
|    * @param {number} N
 | ||
|    * @param {number} prec
 | ||
|    * @param {'number'|'BigNumber'|'Complex'} type
 | ||
|    * @returns {number[][]}
 | ||
|    */
 | ||
| 
 | ||
| 
 | ||
|   function balance(arr, N, prec, type, findVectors) {
 | ||
|     var big = type === 'BigNumber';
 | ||
|     var cplx = type === 'Complex';
 | ||
|     var realzero = big ? bignumber(0) : 0;
 | ||
|     var one = big ? bignumber(1) : cplx ? complex(1) : 1;
 | ||
|     var realone = big ? bignumber(1) : 1; // base of the floating-point arithmetic
 | ||
| 
 | ||
|     var radix = big ? bignumber(10) : 2;
 | ||
|     var radixSq = multiplyScalar(radix, radix); // the diagonal transformation matrix R
 | ||
| 
 | ||
|     var Rdiag;
 | ||
| 
 | ||
|     if (findVectors) {
 | ||
|       Rdiag = Array(N).fill(one);
 | ||
|     } // this isn't the only time we loop thru the matrix...
 | ||
| 
 | ||
| 
 | ||
|     var last = false;
 | ||
| 
 | ||
|     while (!last) {
 | ||
|       // ...haha I'm joking! unless...
 | ||
|       last = true;
 | ||
| 
 | ||
|       for (var i = 0; i < N; i++) {
 | ||
|         // compute the taxicab norm of i-th column and row
 | ||
|         // TODO optimize for complex numbers
 | ||
|         var colNorm = realzero;
 | ||
|         var rowNorm = realzero;
 | ||
| 
 | ||
|         for (var j = 0; j < N; j++) {
 | ||
|           if (i === j) continue;
 | ||
|           var c = abs(arr[i][j]); // should be real
 | ||
| 
 | ||
|           colNorm = addScalar(colNorm, c);
 | ||
|           rowNorm = addScalar(rowNorm, c);
 | ||
|         }
 | ||
| 
 | ||
|         if (!equal(colNorm, 0) && !equal(rowNorm, 0)) {
 | ||
|           // find integer power closest to balancing the matrix
 | ||
|           // (we want to scale only by integer powers of radix,
 | ||
|           // so that we don't lose any precision due to round-off)
 | ||
|           var f = realone;
 | ||
|           var _c = colNorm;
 | ||
|           var rowDivRadix = divideScalar(rowNorm, radix);
 | ||
|           var rowMulRadix = multiplyScalar(rowNorm, radix);
 | ||
| 
 | ||
|           while (smaller(_c, rowDivRadix)) {
 | ||
|             _c = multiplyScalar(_c, radixSq);
 | ||
|             f = multiplyScalar(f, radix);
 | ||
|           }
 | ||
| 
 | ||
|           while (larger(_c, rowMulRadix)) {
 | ||
|             _c = divideScalar(_c, radixSq);
 | ||
|             f = divideScalar(f, radix);
 | ||
|           } // check whether balancing is needed
 | ||
|           // condition = (c + rowNorm) / f < 0.95 * (colNorm + rowNorm)
 | ||
| 
 | ||
| 
 | ||
|           var condition = smaller(divideScalar(addScalar(_c, rowNorm), f), multiplyScalar(addScalar(colNorm, rowNorm), 0.95)); // apply balancing similarity transformation
 | ||
| 
 | ||
|           if (condition) {
 | ||
|             // we should loop once again to check whether
 | ||
|             // another rebalancing is needed
 | ||
|             last = false;
 | ||
|             var g = divideScalar(1, f);
 | ||
| 
 | ||
|             for (var _j = 0; _j < N; _j++) {
 | ||
|               if (i === _j) {
 | ||
|                 continue;
 | ||
|               }
 | ||
| 
 | ||
|               arr[i][_j] = multiplyScalar(arr[i][_j], f);
 | ||
|               arr[_j][i] = multiplyScalar(arr[_j][i], g);
 | ||
|             } // keep track of transformations
 | ||
| 
 | ||
| 
 | ||
|             if (findVectors) {
 | ||
|               Rdiag[i] = multiplyScalar(Rdiag[i], f);
 | ||
|             }
 | ||
|           }
 | ||
|         }
 | ||
|       }
 | ||
|     } // return the diagonal row transformation matrix
 | ||
| 
 | ||
| 
 | ||
|     return diag(Rdiag);
 | ||
|   }
 | ||
|   /**
 | ||
|    * @param {number[][]} arr
 | ||
|    * @param {number} N
 | ||
|    * @param {number} prec
 | ||
|    * @param {'number'|'BigNumber'|'Complex'} type
 | ||
|    * @param {boolean} findVectors
 | ||
|    * @param {number[][]} R the row transformation matrix that will be modified
 | ||
|    */
 | ||
| 
 | ||
| 
 | ||
|   function reduceToHessenberg(arr, N, prec, type, findVectors, R) {
 | ||
|     var big = type === 'BigNumber';
 | ||
|     var cplx = type === 'Complex';
 | ||
|     var zero = big ? bignumber(0) : cplx ? complex(0) : 0;
 | ||
| 
 | ||
|     if (big) {
 | ||
|       prec = bignumber(prec);
 | ||
|     }
 | ||
| 
 | ||
|     for (var i = 0; i < N - 2; i++) {
 | ||
|       // Find the largest subdiag element in the i-th col
 | ||
|       var maxIndex = 0;
 | ||
|       var max = zero;
 | ||
| 
 | ||
|       for (var j = i + 1; j < N; j++) {
 | ||
|         var el = arr[j][i];
 | ||
| 
 | ||
|         if (smaller(abs(max), abs(el))) {
 | ||
|           max = el;
 | ||
|           maxIndex = j;
 | ||
|         }
 | ||
|       } // This col is pivoted, no need to do anything
 | ||
| 
 | ||
| 
 | ||
|       if (smaller(abs(max), prec)) {
 | ||
|         continue;
 | ||
|       }
 | ||
| 
 | ||
|       if (maxIndex !== i + 1) {
 | ||
|         // Interchange maxIndex-th and (i+1)-th row
 | ||
|         var tmp1 = arr[maxIndex];
 | ||
|         arr[maxIndex] = arr[i + 1];
 | ||
|         arr[i + 1] = tmp1; // Interchange maxIndex-th and (i+1)-th column
 | ||
| 
 | ||
|         for (var _j2 = 0; _j2 < N; _j2++) {
 | ||
|           var tmp2 = arr[_j2][maxIndex];
 | ||
|           arr[_j2][maxIndex] = arr[_j2][i + 1];
 | ||
|           arr[_j2][i + 1] = tmp2;
 | ||
|         } // keep track of transformations
 | ||
| 
 | ||
| 
 | ||
|         if (findVectors) {
 | ||
|           var tmp3 = R[maxIndex];
 | ||
|           R[maxIndex] = R[i + 1];
 | ||
|           R[i + 1] = tmp3;
 | ||
|         }
 | ||
|       } // Reduce following rows and columns
 | ||
| 
 | ||
| 
 | ||
|       for (var _j3 = i + 2; _j3 < N; _j3++) {
 | ||
|         var n = divideScalar(arr[_j3][i], max);
 | ||
| 
 | ||
|         if (n === 0) {
 | ||
|           continue;
 | ||
|         } // from j-th row subtract n-times (i+1)th row
 | ||
| 
 | ||
| 
 | ||
|         for (var k = 0; k < N; k++) {
 | ||
|           arr[_j3][k] = subtract(arr[_j3][k], multiplyScalar(n, arr[i + 1][k]));
 | ||
|         } // to (i+1)th column add n-times j-th column
 | ||
| 
 | ||
| 
 | ||
|         for (var _k = 0; _k < N; _k++) {
 | ||
|           arr[_k][i + 1] = addScalar(arr[_k][i + 1], multiplyScalar(n, arr[_k][_j3]));
 | ||
|         } // keep track of transformations
 | ||
| 
 | ||
| 
 | ||
|         if (findVectors) {
 | ||
|           for (var _k2 = 0; _k2 < N; _k2++) {
 | ||
|             R[_j3][_k2] = subtract(R[_j3][_k2], multiplyScalar(n, R[i + 1][_k2]));
 | ||
|           }
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     return R;
 | ||
|   }
 | ||
|   /**
 | ||
|    * @returns {{values: values, C: Matrix}}
 | ||
|    * @see Press, Wiliams: Numerical recipes in Fortran 77
 | ||
|    * @see https://en.wikipedia.org/wiki/QR_algorithm
 | ||
|    */
 | ||
| 
 | ||
| 
 | ||
|   function iterateUntilTriangular(A, N, prec, type, findVectors) {
 | ||
|     var big = type === 'BigNumber';
 | ||
|     var cplx = type === 'Complex';
 | ||
|     var one = big ? bignumber(1) : cplx ? complex(1) : 1;
 | ||
| 
 | ||
|     if (big) {
 | ||
|       prec = bignumber(prec);
 | ||
|     } // The Francis Algorithm
 | ||
|     // The core idea of this algorithm is that doing successive
 | ||
|     // A' = Q⁺AQ transformations will eventually converge to block-
 | ||
|     // upper-triangular with diagonal blocks either 1x1 or 2x2.
 | ||
|     // The Q here is the one from the QR decomposition, A = QR.
 | ||
|     // Since the eigenvalues of a block-upper-triangular matrix are
 | ||
|     // the eigenvalues of its diagonal blocks and we know how to find
 | ||
|     // eigenvalues of a 2x2 matrix, we know the eigenvalues of A.
 | ||
| 
 | ||
| 
 | ||
|     var arr = (0, _object.clone)(A); // the list of converged eigenvalues
 | ||
| 
 | ||
|     var lambdas = []; // size of arr, which will get smaller as eigenvalues converge
 | ||
| 
 | ||
|     var n = N; // the diagonal of the block-diagonal matrix that turns
 | ||
|     // converged 2x2 matrices into upper triangular matrices
 | ||
| 
 | ||
|     var Sdiag = []; // N×N matrix describing the overall transformation done during the QR algorithm
 | ||
| 
 | ||
|     var Qtotal = findVectors ? diag(Array(N).fill(one)) : undefined; // n×n matrix describing the QR transformations done since last convergence
 | ||
| 
 | ||
|     var Qpartial = findVectors ? diag(Array(n).fill(one)) : undefined; // last eigenvalue converged before this many steps
 | ||
| 
 | ||
|     var lastConvergenceBefore = 0;
 | ||
| 
 | ||
|     while (lastConvergenceBefore <= 100) {
 | ||
|       lastConvergenceBefore += 1; // TODO if the convergence is slow, do something clever
 | ||
|       // Perform the factorization
 | ||
| 
 | ||
|       var k = 0; // TODO set close to an eigenvalue
 | ||
| 
 | ||
|       for (var i = 0; i < n; i++) {
 | ||
|         arr[i][i] = subtract(arr[i][i], k);
 | ||
|       } // TODO do an implicit QR transformation
 | ||
| 
 | ||
| 
 | ||
|       var _qr = qr(arr),
 | ||
|           Q = _qr.Q,
 | ||
|           R = _qr.R;
 | ||
| 
 | ||
|       arr = multiply(R, Q);
 | ||
| 
 | ||
|       for (var _i = 0; _i < n; _i++) {
 | ||
|         arr[_i][_i] = addScalar(arr[_i][_i], k);
 | ||
|       } // keep track of transformations
 | ||
| 
 | ||
| 
 | ||
|       if (findVectors) {
 | ||
|         Qpartial = multiply(Qpartial, Q);
 | ||
|       } // The rightmost diagonal element converged to an eigenvalue
 | ||
| 
 | ||
| 
 | ||
|       if (n === 1 || smaller(abs(arr[n - 1][n - 2]), prec)) {
 | ||
|         lastConvergenceBefore = 0;
 | ||
|         lambdas.push(arr[n - 1][n - 1]); // keep track of transformations
 | ||
| 
 | ||
|         if (findVectors) {
 | ||
|           Sdiag.unshift([[1]]);
 | ||
|           inflateMatrix(Qpartial, N);
 | ||
|           Qtotal = multiply(Qtotal, Qpartial);
 | ||
| 
 | ||
|           if (n > 1) {
 | ||
|             Qpartial = diag(Array(n - 1).fill(one));
 | ||
|           }
 | ||
|         } // reduce the matrix size
 | ||
| 
 | ||
| 
 | ||
|         n -= 1;
 | ||
|         arr.pop();
 | ||
| 
 | ||
|         for (var _i2 = 0; _i2 < n; _i2++) {
 | ||
|           arr[_i2].pop();
 | ||
|         } // The rightmost diagonal 2x2 block converged
 | ||
| 
 | ||
|       } else if (n === 2 || smaller(abs(arr[n - 2][n - 3]), prec)) {
 | ||
|         lastConvergenceBefore = 0;
 | ||
|         var ll = eigenvalues2x2(arr[n - 2][n - 2], arr[n - 2][n - 1], arr[n - 1][n - 2], arr[n - 1][n - 1]);
 | ||
|         lambdas.push.apply(lambdas, (0, _toConsumableArray2.default)(ll)); // keep track of transformations
 | ||
| 
 | ||
|         if (findVectors) {
 | ||
|           Sdiag.unshift(jordanBase2x2(arr[n - 2][n - 2], arr[n - 2][n - 1], arr[n - 1][n - 2], arr[n - 1][n - 1], ll[0], ll[1], prec, type));
 | ||
|           inflateMatrix(Qpartial, N);
 | ||
|           Qtotal = multiply(Qtotal, Qpartial);
 | ||
| 
 | ||
|           if (n > 2) {
 | ||
|             Qpartial = diag(Array(n - 2).fill(one));
 | ||
|           }
 | ||
|         } // reduce the matrix size
 | ||
| 
 | ||
| 
 | ||
|         n -= 2;
 | ||
|         arr.pop();
 | ||
|         arr.pop();
 | ||
| 
 | ||
|         for (var _i3 = 0; _i3 < n; _i3++) {
 | ||
|           arr[_i3].pop();
 | ||
| 
 | ||
|           arr[_i3].pop();
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       if (n === 0) {
 | ||
|         break;
 | ||
|       }
 | ||
|     } // standard sorting
 | ||
| 
 | ||
| 
 | ||
|     lambdas.sort(function (a, b) {
 | ||
|       return +subtract(abs(a), abs(b));
 | ||
|     }); // the algorithm didn't converge
 | ||
| 
 | ||
|     if (lastConvergenceBefore > 100) {
 | ||
|       var err = Error('The eigenvalues failed to converge. Only found these eigenvalues: ' + lambdas.join(', '));
 | ||
|       err.values = lambdas;
 | ||
|       err.vectors = [];
 | ||
|       throw err;
 | ||
|     } // combine the overall QR transformation Qtotal with the subsequent
 | ||
|     // transformation S that turns the diagonal 2x2 blocks to upper triangular
 | ||
| 
 | ||
| 
 | ||
|     var C = findVectors ? multiply(Qtotal, blockDiag(Sdiag, N)) : undefined;
 | ||
|     return {
 | ||
|       values: lambdas,
 | ||
|       C: C
 | ||
|     };
 | ||
|   }
 | ||
|   /**
 | ||
|    * @param {Matrix} A hessenberg-form matrix
 | ||
|    * @param {number} N size of A
 | ||
|    * @param {Matrix} C column transformation matrix that turns A into upper triangular
 | ||
|    * @param {Matrix} R similarity that turns original matrix into A
 | ||
|    * @param {number[]} values array of eigenvalues of A
 | ||
|    * @param {'number'|'BigNumber'|'Complex'} type
 | ||
|    * @returns {number[][]} eigenvalues
 | ||
|    */
 | ||
| 
 | ||
| 
 | ||
|   function findEigenvectors(A, N, C, R, values, prec, type) {
 | ||
|     var Cinv = inv(C);
 | ||
|     var U = multiply(Cinv, A, C);
 | ||
|     var big = type === 'BigNumber';
 | ||
|     var cplx = type === 'Complex';
 | ||
|     var zero = big ? bignumber(0) : cplx ? complex(0) : 0;
 | ||
|     var one = big ? bignumber(1) : cplx ? complex(1) : 1; // turn values into a kind of "multiset"
 | ||
|     // this way it is easier to find eigenvectors
 | ||
| 
 | ||
|     var uniqueValues = [];
 | ||
|     var multiplicities = [];
 | ||
| 
 | ||
|     var _iterator = _createForOfIteratorHelper(values),
 | ||
|         _step;
 | ||
| 
 | ||
|     try {
 | ||
|       for (_iterator.s(); !(_step = _iterator.n()).done;) {
 | ||
|         var λ = _step.value;
 | ||
| 
 | ||
|         var _i4 = indexOf(uniqueValues, λ, equal);
 | ||
| 
 | ||
|         if (_i4 === -1) {
 | ||
|           uniqueValues.push(λ);
 | ||
|           multiplicities.push(1);
 | ||
|         } else {
 | ||
|           multiplicities[_i4] += 1;
 | ||
|         }
 | ||
|       } // find eigenvectors by solving U − λE = 0
 | ||
|       // TODO replace with an iterative eigenvector algorithm
 | ||
|       // (this one might fail for imprecise eigenvalues)
 | ||
| 
 | ||
|     } catch (err) {
 | ||
|       _iterator.e(err);
 | ||
|     } finally {
 | ||
|       _iterator.f();
 | ||
|     }
 | ||
| 
 | ||
|     var vectors = [];
 | ||
|     var len = uniqueValues.length;
 | ||
|     var b = Array(N).fill(zero);
 | ||
|     var E = diag(Array(N).fill(one)); // eigenvalues for which usolve failed (due to numerical error)
 | ||
| 
 | ||
|     var failedLambdas = [];
 | ||
| 
 | ||
|     var _loop = function _loop(i) {
 | ||
|       var λ = uniqueValues[i];
 | ||
|       var S = subtract(U, multiply(λ, E)); // the characteristic matrix
 | ||
| 
 | ||
|       var solutions = usolveAll(S, b);
 | ||
|       solutions.shift(); // ignore the null vector
 | ||
|       // looks like we missed something, try inverse iteration
 | ||
| 
 | ||
|       while (solutions.length < multiplicities[i]) {
 | ||
|         var approxVec = inverseIterate(S, N, solutions, prec, type);
 | ||
| 
 | ||
|         if (approxVec == null) {
 | ||
|           // no more vectors were found
 | ||
|           failedLambdas.push(λ);
 | ||
|           break;
 | ||
|         }
 | ||
| 
 | ||
|         solutions.push(approxVec);
 | ||
|       } // Transform back into original array coordinates
 | ||
| 
 | ||
| 
 | ||
|       var correction = multiply(inv(R), C);
 | ||
|       solutions = solutions.map(function (v) {
 | ||
|         return multiply(correction, v);
 | ||
|       });
 | ||
|       vectors.push.apply(vectors, (0, _toConsumableArray2.default)(solutions.map(function (v) {
 | ||
|         return flatten(v);
 | ||
|       })));
 | ||
|     };
 | ||
| 
 | ||
|     for (var i = 0; i < len; i++) {
 | ||
|       _loop(i);
 | ||
|     }
 | ||
| 
 | ||
|     if (failedLambdas.length !== 0) {
 | ||
|       var err = new Error('Failed to find eigenvectors for the following eigenvalues: ' + failedLambdas.join(', '));
 | ||
|       err.values = values;
 | ||
|       err.vectors = vectors;
 | ||
|       throw err;
 | ||
|     }
 | ||
| 
 | ||
|     return vectors;
 | ||
|   }
 | ||
|   /**
 | ||
|    * Compute the eigenvalues of an 2x2 matrix
 | ||
|    * @return {[number,number]}
 | ||
|    */
 | ||
| 
 | ||
| 
 | ||
|   function eigenvalues2x2(a, b, c, d) {
 | ||
|     // λ± = ½ trA ± ½ √( tr²A - 4 detA )
 | ||
|     var trA = addScalar(a, d);
 | ||
|     var detA = subtract(multiplyScalar(a, d), multiplyScalar(b, c));
 | ||
|     var x = multiplyScalar(trA, 0.5);
 | ||
|     var y = multiplyScalar(sqrt(subtract(multiplyScalar(trA, trA), multiplyScalar(4, detA))), 0.5);
 | ||
|     return [addScalar(x, y), subtract(x, y)];
 | ||
|   }
 | ||
|   /**
 | ||
|    * For an 2x2 matrix compute the transformation matrix S,
 | ||
|    * so that SAS⁻¹ is an upper triangular matrix
 | ||
|    * @return {[[number,number],[number,number]]}
 | ||
|    * @see https://math.berkeley.edu/~ogus/old/Math_54-05/webfoils/jordan.pdf
 | ||
|    * @see http://people.math.harvard.edu/~knill/teaching/math21b2004/exhibits/2dmatrices/index.html
 | ||
|    */
 | ||
| 
 | ||
| 
 | ||
|   function jordanBase2x2(a, b, c, d, l1, l2, prec, type) {
 | ||
|     var big = type === 'BigNumber';
 | ||
|     var cplx = type === 'Complex';
 | ||
|     var zero = big ? bignumber(0) : cplx ? complex(0) : 0;
 | ||
|     var one = big ? bignumber(1) : cplx ? complex(1) : 1; // matrix is already upper triangular
 | ||
|     // return an identity matrix
 | ||
| 
 | ||
|     if (smaller(abs(c), prec)) {
 | ||
|       return [[one, zero], [zero, one]];
 | ||
|     } // matrix is diagonalizable
 | ||
|     // return its eigenvectors as columns
 | ||
| 
 | ||
| 
 | ||
|     if (larger(abs(subtract(l1, l2)), prec)) {
 | ||
|       return [[subtract(l1, d), subtract(l2, d)], [c, c]];
 | ||
|     } // matrix is not diagonalizable
 | ||
|     // compute off-diagonal elements of N = A - λI
 | ||
|     // N₁₂ = 0 ⇒ S = ( N⃗₁, I⃗₁ )
 | ||
|     // N₁₂ ≠ 0 ⇒ S = ( N⃗₂, I⃗₂ )
 | ||
| 
 | ||
| 
 | ||
|     var na = subtract(a, l1);
 | ||
|     var nb = subtract(b, l1);
 | ||
|     var nc = subtract(c, l1);
 | ||
|     var nd = subtract(d, l1);
 | ||
| 
 | ||
|     if (smaller(abs(nb), prec)) {
 | ||
|       return [[na, one], [nc, zero]];
 | ||
|     } else {
 | ||
|       return [[nb, zero], [nd, one]];
 | ||
|     }
 | ||
|   }
 | ||
|   /**
 | ||
|    * Enlarge the matrix from n×n to N×N, setting the new
 | ||
|    * elements to 1 on diagonal and 0 elsewhere
 | ||
|    */
 | ||
| 
 | ||
| 
 | ||
|   function inflateMatrix(arr, N) {
 | ||
|     // add columns
 | ||
|     for (var i = 0; i < arr.length; i++) {
 | ||
|       var _arr$i;
 | ||
| 
 | ||
|       (_arr$i = arr[i]).push.apply(_arr$i, (0, _toConsumableArray2.default)(Array(N - arr[i].length).fill(0)));
 | ||
|     } // add rows
 | ||
| 
 | ||
| 
 | ||
|     for (var _i5 = arr.length; _i5 < N; _i5++) {
 | ||
|       arr.push(Array(N).fill(0));
 | ||
|       arr[_i5][_i5] = 1;
 | ||
|     }
 | ||
| 
 | ||
|     return arr;
 | ||
|   }
 | ||
|   /**
 | ||
|    * Create a block-diagonal matrix with the given square matrices on the diagonal
 | ||
|    * @param {Matrix[] | number[][][]} arr array of matrices to be placed on the diagonal
 | ||
|    * @param {number} N the size of the resulting matrix
 | ||
|    */
 | ||
| 
 | ||
| 
 | ||
|   function blockDiag(arr, N) {
 | ||
|     var M = [];
 | ||
| 
 | ||
|     for (var i = 0; i < N; i++) {
 | ||
|       M[i] = Array(N).fill(0);
 | ||
|     }
 | ||
| 
 | ||
|     var I = 0;
 | ||
| 
 | ||
|     var _iterator2 = _createForOfIteratorHelper(arr),
 | ||
|         _step2;
 | ||
| 
 | ||
|     try {
 | ||
|       for (_iterator2.s(); !(_step2 = _iterator2.n()).done;) {
 | ||
|         var sub = _step2.value;
 | ||
|         var n = sub.length;
 | ||
| 
 | ||
|         for (var _i6 = 0; _i6 < n; _i6++) {
 | ||
|           for (var j = 0; j < n; j++) {
 | ||
|             M[I + _i6][I + j] = sub[_i6][j];
 | ||
|           }
 | ||
|         }
 | ||
| 
 | ||
|         I += n;
 | ||
|       }
 | ||
|     } catch (err) {
 | ||
|       _iterator2.e(err);
 | ||
|     } finally {
 | ||
|       _iterator2.f();
 | ||
|     }
 | ||
| 
 | ||
|     return M;
 | ||
|   }
 | ||
|   /**
 | ||
|    * Finds the index of an element in an array using a custom equality function
 | ||
|    * @template T
 | ||
|    * @param {Array<T>} arr array in which to search
 | ||
|    * @param {T} el the element to find
 | ||
|    * @param {function(T, T): boolean} fn the equality function, first argument is an element of `arr`, the second is always `el`
 | ||
|    * @returns {number} the index of `el`, or -1 when it's not in `arr`
 | ||
|    */
 | ||
| 
 | ||
| 
 | ||
|   function indexOf(arr, el, fn) {
 | ||
|     for (var i = 0; i < arr.length; i++) {
 | ||
|       if (fn(arr[i], el)) {
 | ||
|         return i;
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     return -1;
 | ||
|   }
 | ||
|   /**
 | ||
|    * Provided a near-singular upper-triangular matrix A and a list of vectors,
 | ||
|    * finds an eigenvector of A with the smallest eigenvalue, which is orthogonal
 | ||
|    * to each vector in the list
 | ||
|    * @template T
 | ||
|    * @param {T[][]} A near-singular square matrix
 | ||
|    * @param {number} N dimension
 | ||
|    * @param {T[][]} orthog list of vectors
 | ||
|    * @param {number} prec epsilon
 | ||
|    * @param {'number'|'BigNumber'|'Complex'} type
 | ||
|    * @return {T[] | null} eigenvector
 | ||
|    *
 | ||
|    * @see Numerical Recipes for Fortran 77 – 11.7 Eigenvalues or Eigenvectors by Inverse Iteration
 | ||
|    */
 | ||
| 
 | ||
| 
 | ||
|   function inverseIterate(A, N, orthog, prec, type) {
 | ||
|     var largeNum = type === 'BigNumber' ? bignumber(1000) : 1000;
 | ||
|     var b; // the vector
 | ||
|     // you better choose a random vector before I count to five
 | ||
| 
 | ||
|     var i = 0;
 | ||
| 
 | ||
|     while (true) {
 | ||
|       b = randomOrthogonalVector(N, orthog, type);
 | ||
|       b = usolve(A, b);
 | ||
| 
 | ||
|       if (larger(norm(b), largeNum)) {
 | ||
|         break;
 | ||
|       }
 | ||
| 
 | ||
|       if (++i >= 5) {
 | ||
|         return null;
 | ||
|       }
 | ||
|     } // you better converge before I count to ten
 | ||
| 
 | ||
| 
 | ||
|     i = 0;
 | ||
| 
 | ||
|     while (true) {
 | ||
|       var c = usolve(A, b);
 | ||
| 
 | ||
|       if (smaller(norm(orthogonalComplement(b, [c])), prec)) {
 | ||
|         break;
 | ||
|       }
 | ||
| 
 | ||
|       if (++i >= 10) {
 | ||
|         return null;
 | ||
|       }
 | ||
| 
 | ||
|       b = normalize(c);
 | ||
|     }
 | ||
| 
 | ||
|     return b;
 | ||
|   }
 | ||
|   /**
 | ||
|    * Generates a random unit vector of dimension N, orthogonal to each vector in the list
 | ||
|    * @template T
 | ||
|    * @param {number} N dimension
 | ||
|    * @param {T[][]} orthog list of vectors
 | ||
|    * @param {'number'|'BigNumber'|'Complex'} type
 | ||
|    * @returns {T[]} random vector
 | ||
|    */
 | ||
| 
 | ||
| 
 | ||
|   function randomOrthogonalVector(N, orthog, type) {
 | ||
|     var big = type === 'BigNumber';
 | ||
|     var cplx = type === 'Complex'; // generate random vector with the correct type
 | ||
| 
 | ||
|     var v = Array(N).fill(0).map(function (_) {
 | ||
|       return 2 * Math.random() - 1;
 | ||
|     });
 | ||
| 
 | ||
|     if (big) {
 | ||
|       v = v.map(function (n) {
 | ||
|         return bignumber(n);
 | ||
|       });
 | ||
|     }
 | ||
| 
 | ||
|     if (cplx) {
 | ||
|       v = v.map(function (n) {
 | ||
|         return complex(n);
 | ||
|       });
 | ||
|     } // project to orthogonal complement
 | ||
| 
 | ||
| 
 | ||
|     v = orthogonalComplement(v, orthog); // normalize
 | ||
| 
 | ||
|     return normalize(v, type);
 | ||
|   }
 | ||
|   /**
 | ||
|    * Project vector v to the orthogonal complement of an array of vectors
 | ||
|    */
 | ||
| 
 | ||
| 
 | ||
|   function orthogonalComplement(v, orthog) {
 | ||
|     var _iterator3 = _createForOfIteratorHelper(orthog),
 | ||
|         _step3;
 | ||
| 
 | ||
|     try {
 | ||
|       for (_iterator3.s(); !(_step3 = _iterator3.n()).done;) {
 | ||
|         var w = _step3.value;
 | ||
|         // v := v − (w, v)/∥w∥² w
 | ||
|         v = subtract(v, multiply(divideScalar(dot(w, v), dot(w, w)), w));
 | ||
|       }
 | ||
|     } catch (err) {
 | ||
|       _iterator3.e(err);
 | ||
|     } finally {
 | ||
|       _iterator3.f();
 | ||
|     }
 | ||
| 
 | ||
|     return v;
 | ||
|   }
 | ||
|   /**
 | ||
|    * Calculate the norm of a vector.
 | ||
|    * We can't use math.norm because factory can't handle circular dependency.
 | ||
|    * Seriously, I'm really fed up with factory.
 | ||
|    */
 | ||
| 
 | ||
| 
 | ||
|   function norm(v) {
 | ||
|     return abs(sqrt(dot(v, v)));
 | ||
|   }
 | ||
|   /**
 | ||
|    * Normalize a vector
 | ||
|    * @template T
 | ||
|    * @param {T[]} v
 | ||
|    * @param {'number'|'BigNumber'|'Complex'} type
 | ||
|    * @returns {T[]} normalized vec
 | ||
|    */
 | ||
| 
 | ||
| 
 | ||
|   function normalize(v, type) {
 | ||
|     var big = type === 'BigNumber';
 | ||
|     var cplx = type === 'Complex';
 | ||
|     var one = big ? bignumber(1) : cplx ? complex(1) : 1;
 | ||
|     return multiply(divideScalar(one, norm(v)), v);
 | ||
|   }
 | ||
| 
 | ||
|   return complexEigs;
 | ||
| } |