912 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			912 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
"use strict";
 | 
						|
 | 
						|
Object.defineProperty(exports, "__esModule", {
 | 
						|
  value: true
 | 
						|
});
 | 
						|
exports.createMultiply = void 0;
 | 
						|
 | 
						|
var _factory = require("../../utils/factory.js");
 | 
						|
 | 
						|
var _is = require("../../utils/is.js");
 | 
						|
 | 
						|
var _object = require("../../utils/object.js");
 | 
						|
 | 
						|
var _array = require("../../utils/array.js");
 | 
						|
 | 
						|
var _algorithm = require("../../type/matrix/utils/algorithm11.js");
 | 
						|
 | 
						|
var _algorithm2 = require("../../type/matrix/utils/algorithm14.js");
 | 
						|
 | 
						|
var name = 'multiply';
 | 
						|
var dependencies = ['typed', 'matrix', 'addScalar', 'multiplyScalar', 'equalScalar', 'dot'];
 | 
						|
var createMultiply = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
 | 
						|
  var typed = _ref.typed,
 | 
						|
      matrix = _ref.matrix,
 | 
						|
      addScalar = _ref.addScalar,
 | 
						|
      multiplyScalar = _ref.multiplyScalar,
 | 
						|
      equalScalar = _ref.equalScalar,
 | 
						|
      dot = _ref.dot;
 | 
						|
  var algorithm11 = (0, _algorithm.createAlgorithm11)({
 | 
						|
    typed: typed,
 | 
						|
    equalScalar: equalScalar
 | 
						|
  });
 | 
						|
  var algorithm14 = (0, _algorithm2.createAlgorithm14)({
 | 
						|
    typed: typed
 | 
						|
  });
 | 
						|
 | 
						|
  function _validateMatrixDimensions(size1, size2) {
 | 
						|
    // check left operand dimensions
 | 
						|
    switch (size1.length) {
 | 
						|
      case 1:
 | 
						|
        // check size2
 | 
						|
        switch (size2.length) {
 | 
						|
          case 1:
 | 
						|
            // Vector x Vector
 | 
						|
            if (size1[0] !== size2[0]) {
 | 
						|
              // throw error
 | 
						|
              throw new RangeError('Dimension mismatch in multiplication. Vectors must have the same length');
 | 
						|
            }
 | 
						|
 | 
						|
            break;
 | 
						|
 | 
						|
          case 2:
 | 
						|
            // Vector x Matrix
 | 
						|
            if (size1[0] !== size2[0]) {
 | 
						|
              // throw error
 | 
						|
              throw new RangeError('Dimension mismatch in multiplication. Vector length (' + size1[0] + ') must match Matrix rows (' + size2[0] + ')');
 | 
						|
            }
 | 
						|
 | 
						|
            break;
 | 
						|
 | 
						|
          default:
 | 
						|
            throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)');
 | 
						|
        }
 | 
						|
 | 
						|
        break;
 | 
						|
 | 
						|
      case 2:
 | 
						|
        // check size2
 | 
						|
        switch (size2.length) {
 | 
						|
          case 1:
 | 
						|
            // Matrix x Vector
 | 
						|
            if (size1[1] !== size2[0]) {
 | 
						|
              // throw error
 | 
						|
              throw new RangeError('Dimension mismatch in multiplication. Matrix columns (' + size1[1] + ') must match Vector length (' + size2[0] + ')');
 | 
						|
            }
 | 
						|
 | 
						|
            break;
 | 
						|
 | 
						|
          case 2:
 | 
						|
            // Matrix x Matrix
 | 
						|
            if (size1[1] !== size2[0]) {
 | 
						|
              // throw error
 | 
						|
              throw new RangeError('Dimension mismatch in multiplication. Matrix A columns (' + size1[1] + ') must match Matrix B rows (' + size2[0] + ')');
 | 
						|
            }
 | 
						|
 | 
						|
            break;
 | 
						|
 | 
						|
          default:
 | 
						|
            throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)');
 | 
						|
        }
 | 
						|
 | 
						|
        break;
 | 
						|
 | 
						|
      default:
 | 
						|
        throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix A has ' + size1.length + ' dimensions)');
 | 
						|
    }
 | 
						|
  }
 | 
						|
  /**
 | 
						|
   * C = A * B
 | 
						|
   *
 | 
						|
   * @param {Matrix} a            Dense Vector   (N)
 | 
						|
   * @param {Matrix} b            Dense Vector   (N)
 | 
						|
   *
 | 
						|
   * @return {number}             Scalar value
 | 
						|
   */
 | 
						|
 | 
						|
 | 
						|
  function _multiplyVectorVector(a, b, n) {
 | 
						|
    // check empty vector
 | 
						|
    if (n === 0) {
 | 
						|
      throw new Error('Cannot multiply two empty vectors');
 | 
						|
    }
 | 
						|
 | 
						|
    return dot(a, b);
 | 
						|
  }
 | 
						|
  /**
 | 
						|
   * C = A * B
 | 
						|
   *
 | 
						|
   * @param {Matrix} a            Dense Vector   (M)
 | 
						|
   * @param {Matrix} b            Matrix         (MxN)
 | 
						|
   *
 | 
						|
   * @return {Matrix}             Dense Vector   (N)
 | 
						|
   */
 | 
						|
 | 
						|
 | 
						|
  function _multiplyVectorMatrix(a, b) {
 | 
						|
    // process storage
 | 
						|
    if (b.storage() !== 'dense') {
 | 
						|
      throw new Error('Support for SparseMatrix not implemented');
 | 
						|
    }
 | 
						|
 | 
						|
    return _multiplyVectorDenseMatrix(a, b);
 | 
						|
  }
 | 
						|
  /**
 | 
						|
   * C = A * B
 | 
						|
   *
 | 
						|
   * @param {Matrix} a            Dense Vector   (M)
 | 
						|
   * @param {Matrix} b            Dense Matrix   (MxN)
 | 
						|
   *
 | 
						|
   * @return {Matrix}             Dense Vector   (N)
 | 
						|
   */
 | 
						|
 | 
						|
 | 
						|
  function _multiplyVectorDenseMatrix(a, b) {
 | 
						|
    // a dense
 | 
						|
    var adata = a._data;
 | 
						|
    var asize = a._size;
 | 
						|
    var adt = a._datatype; // b dense
 | 
						|
 | 
						|
    var bdata = b._data;
 | 
						|
    var bsize = b._size;
 | 
						|
    var bdt = b._datatype; // rows & columns
 | 
						|
 | 
						|
    var alength = asize[0];
 | 
						|
    var bcolumns = bsize[1]; // datatype
 | 
						|
 | 
						|
    var dt; // addScalar signature to use
 | 
						|
 | 
						|
    var af = addScalar; // multiplyScalar signature to use
 | 
						|
 | 
						|
    var mf = multiplyScalar; // process data types
 | 
						|
 | 
						|
    if (adt && bdt && adt === bdt && typeof adt === 'string') {
 | 
						|
      // datatype
 | 
						|
      dt = adt; // find signatures that matches (dt, dt)
 | 
						|
 | 
						|
      af = typed.find(addScalar, [dt, dt]);
 | 
						|
      mf = typed.find(multiplyScalar, [dt, dt]);
 | 
						|
    } // result
 | 
						|
 | 
						|
 | 
						|
    var c = []; // loop matrix columns
 | 
						|
 | 
						|
    for (var j = 0; j < bcolumns; j++) {
 | 
						|
      // sum (do not initialize it with zero)
 | 
						|
      var sum = mf(adata[0], bdata[0][j]); // loop vector
 | 
						|
 | 
						|
      for (var i = 1; i < alength; i++) {
 | 
						|
        // multiply & accumulate
 | 
						|
        sum = af(sum, mf(adata[i], bdata[i][j]));
 | 
						|
      }
 | 
						|
 | 
						|
      c[j] = sum;
 | 
						|
    } // return matrix
 | 
						|
 | 
						|
 | 
						|
    return a.createDenseMatrix({
 | 
						|
      data: c,
 | 
						|
      size: [bcolumns],
 | 
						|
      datatype: dt
 | 
						|
    });
 | 
						|
  }
 | 
						|
  /**
 | 
						|
   * C = A * B
 | 
						|
   *
 | 
						|
   * @param {Matrix} a            Matrix         (MxN)
 | 
						|
   * @param {Matrix} b            Dense Vector   (N)
 | 
						|
   *
 | 
						|
   * @return {Matrix}             Dense Vector   (M)
 | 
						|
   */
 | 
						|
 | 
						|
 | 
						|
  var _multiplyMatrixVector = typed('_multiplyMatrixVector', {
 | 
						|
    'DenseMatrix, any': _multiplyDenseMatrixVector,
 | 
						|
    'SparseMatrix, any': _multiplySparseMatrixVector
 | 
						|
  });
 | 
						|
  /**
 | 
						|
   * C = A * B
 | 
						|
   *
 | 
						|
   * @param {Matrix} a            Matrix         (MxN)
 | 
						|
   * @param {Matrix} b            Matrix         (NxC)
 | 
						|
   *
 | 
						|
   * @return {Matrix}             Matrix         (MxC)
 | 
						|
   */
 | 
						|
 | 
						|
 | 
						|
  var _multiplyMatrixMatrix = typed('_multiplyMatrixMatrix', {
 | 
						|
    'DenseMatrix, DenseMatrix': _multiplyDenseMatrixDenseMatrix,
 | 
						|
    'DenseMatrix, SparseMatrix': _multiplyDenseMatrixSparseMatrix,
 | 
						|
    'SparseMatrix, DenseMatrix': _multiplySparseMatrixDenseMatrix,
 | 
						|
    'SparseMatrix, SparseMatrix': _multiplySparseMatrixSparseMatrix
 | 
						|
  });
 | 
						|
  /**
 | 
						|
   * C = A * B
 | 
						|
   *
 | 
						|
   * @param {Matrix} a            DenseMatrix  (MxN)
 | 
						|
   * @param {Matrix} b            Dense Vector (N)
 | 
						|
   *
 | 
						|
   * @return {Matrix}             Dense Vector (M)
 | 
						|
   */
 | 
						|
 | 
						|
 | 
						|
  function _multiplyDenseMatrixVector(a, b) {
 | 
						|
    // a dense
 | 
						|
    var adata = a._data;
 | 
						|
    var asize = a._size;
 | 
						|
    var adt = a._datatype; // b dense
 | 
						|
 | 
						|
    var bdata = b._data;
 | 
						|
    var bdt = b._datatype; // rows & columns
 | 
						|
 | 
						|
    var arows = asize[0];
 | 
						|
    var acolumns = asize[1]; // datatype
 | 
						|
 | 
						|
    var dt; // addScalar signature to use
 | 
						|
 | 
						|
    var af = addScalar; // multiplyScalar signature to use
 | 
						|
 | 
						|
    var mf = multiplyScalar; // process data types
 | 
						|
 | 
						|
    if (adt && bdt && adt === bdt && typeof adt === 'string') {
 | 
						|
      // datatype
 | 
						|
      dt = adt; // find signatures that matches (dt, dt)
 | 
						|
 | 
						|
      af = typed.find(addScalar, [dt, dt]);
 | 
						|
      mf = typed.find(multiplyScalar, [dt, dt]);
 | 
						|
    } // result
 | 
						|
 | 
						|
 | 
						|
    var c = []; // loop matrix a rows
 | 
						|
 | 
						|
    for (var i = 0; i < arows; i++) {
 | 
						|
      // current row
 | 
						|
      var row = adata[i]; // sum (do not initialize it with zero)
 | 
						|
 | 
						|
      var sum = mf(row[0], bdata[0]); // loop matrix a columns
 | 
						|
 | 
						|
      for (var j = 1; j < acolumns; j++) {
 | 
						|
        // multiply & accumulate
 | 
						|
        sum = af(sum, mf(row[j], bdata[j]));
 | 
						|
      }
 | 
						|
 | 
						|
      c[i] = sum;
 | 
						|
    } // return matrix
 | 
						|
 | 
						|
 | 
						|
    return a.createDenseMatrix({
 | 
						|
      data: c,
 | 
						|
      size: [arows],
 | 
						|
      datatype: dt
 | 
						|
    });
 | 
						|
  }
 | 
						|
  /**
 | 
						|
   * C = A * B
 | 
						|
   *
 | 
						|
   * @param {Matrix} a            DenseMatrix    (MxN)
 | 
						|
   * @param {Matrix} b            DenseMatrix    (NxC)
 | 
						|
   *
 | 
						|
   * @return {Matrix}             DenseMatrix    (MxC)
 | 
						|
   */
 | 
						|
 | 
						|
 | 
						|
  function _multiplyDenseMatrixDenseMatrix(a, b) {
 | 
						|
    // a dense
 | 
						|
    var adata = a._data;
 | 
						|
    var asize = a._size;
 | 
						|
    var adt = a._datatype; // b dense
 | 
						|
 | 
						|
    var bdata = b._data;
 | 
						|
    var bsize = b._size;
 | 
						|
    var bdt = b._datatype; // rows & columns
 | 
						|
 | 
						|
    var arows = asize[0];
 | 
						|
    var acolumns = asize[1];
 | 
						|
    var bcolumns = bsize[1]; // datatype
 | 
						|
 | 
						|
    var dt; // addScalar signature to use
 | 
						|
 | 
						|
    var af = addScalar; // multiplyScalar signature to use
 | 
						|
 | 
						|
    var mf = multiplyScalar; // process data types
 | 
						|
 | 
						|
    if (adt && bdt && adt === bdt && typeof adt === 'string') {
 | 
						|
      // datatype
 | 
						|
      dt = adt; // find signatures that matches (dt, dt)
 | 
						|
 | 
						|
      af = typed.find(addScalar, [dt, dt]);
 | 
						|
      mf = typed.find(multiplyScalar, [dt, dt]);
 | 
						|
    } // result
 | 
						|
 | 
						|
 | 
						|
    var c = []; // loop matrix a rows
 | 
						|
 | 
						|
    for (var i = 0; i < arows; i++) {
 | 
						|
      // current row
 | 
						|
      var row = adata[i]; // initialize row array
 | 
						|
 | 
						|
      c[i] = []; // loop matrix b columns
 | 
						|
 | 
						|
      for (var j = 0; j < bcolumns; j++) {
 | 
						|
        // sum (avoid initializing sum to zero)
 | 
						|
        var sum = mf(row[0], bdata[0][j]); // loop matrix a columns
 | 
						|
 | 
						|
        for (var x = 1; x < acolumns; x++) {
 | 
						|
          // multiply & accumulate
 | 
						|
          sum = af(sum, mf(row[x], bdata[x][j]));
 | 
						|
        }
 | 
						|
 | 
						|
        c[i][j] = sum;
 | 
						|
      }
 | 
						|
    } // return matrix
 | 
						|
 | 
						|
 | 
						|
    return a.createDenseMatrix({
 | 
						|
      data: c,
 | 
						|
      size: [arows, bcolumns],
 | 
						|
      datatype: dt
 | 
						|
    });
 | 
						|
  }
 | 
						|
  /**
 | 
						|
   * C = A * B
 | 
						|
   *
 | 
						|
   * @param {Matrix} a            DenseMatrix    (MxN)
 | 
						|
   * @param {Matrix} b            SparseMatrix   (NxC)
 | 
						|
   *
 | 
						|
   * @return {Matrix}             SparseMatrix   (MxC)
 | 
						|
   */
 | 
						|
 | 
						|
 | 
						|
  function _multiplyDenseMatrixSparseMatrix(a, b) {
 | 
						|
    // a dense
 | 
						|
    var adata = a._data;
 | 
						|
    var asize = a._size;
 | 
						|
    var adt = a._datatype; // b sparse
 | 
						|
 | 
						|
    var bvalues = b._values;
 | 
						|
    var bindex = b._index;
 | 
						|
    var bptr = b._ptr;
 | 
						|
    var bsize = b._size;
 | 
						|
    var bdt = b._datatype; // validate b matrix
 | 
						|
 | 
						|
    if (!bvalues) {
 | 
						|
      throw new Error('Cannot multiply Dense Matrix times Pattern only Matrix');
 | 
						|
    } // rows & columns
 | 
						|
 | 
						|
 | 
						|
    var arows = asize[0];
 | 
						|
    var bcolumns = bsize[1]; // datatype
 | 
						|
 | 
						|
    var dt; // addScalar signature to use
 | 
						|
 | 
						|
    var af = addScalar; // multiplyScalar signature to use
 | 
						|
 | 
						|
    var mf = multiplyScalar; // equalScalar signature to use
 | 
						|
 | 
						|
    var eq = equalScalar; // zero value
 | 
						|
 | 
						|
    var zero = 0; // process data types
 | 
						|
 | 
						|
    if (adt && bdt && adt === bdt && typeof adt === 'string') {
 | 
						|
      // datatype
 | 
						|
      dt = adt; // find signatures that matches (dt, dt)
 | 
						|
 | 
						|
      af = typed.find(addScalar, [dt, dt]);
 | 
						|
      mf = typed.find(multiplyScalar, [dt, dt]);
 | 
						|
      eq = typed.find(equalScalar, [dt, dt]); // convert 0 to the same datatype
 | 
						|
 | 
						|
      zero = typed.convert(0, dt);
 | 
						|
    } // result
 | 
						|
 | 
						|
 | 
						|
    var cvalues = [];
 | 
						|
    var cindex = [];
 | 
						|
    var cptr = []; // c matrix
 | 
						|
 | 
						|
    var c = b.createSparseMatrix({
 | 
						|
      values: cvalues,
 | 
						|
      index: cindex,
 | 
						|
      ptr: cptr,
 | 
						|
      size: [arows, bcolumns],
 | 
						|
      datatype: dt
 | 
						|
    }); // loop b columns
 | 
						|
 | 
						|
    for (var jb = 0; jb < bcolumns; jb++) {
 | 
						|
      // update ptr
 | 
						|
      cptr[jb] = cindex.length; // indeces in column jb
 | 
						|
 | 
						|
      var kb0 = bptr[jb];
 | 
						|
      var kb1 = bptr[jb + 1]; // do not process column jb if no data exists
 | 
						|
 | 
						|
      if (kb1 > kb0) {
 | 
						|
        // last row mark processed
 | 
						|
        var last = 0; // loop a rows
 | 
						|
 | 
						|
        for (var i = 0; i < arows; i++) {
 | 
						|
          // column mark
 | 
						|
          var mark = i + 1; // C[i, jb]
 | 
						|
 | 
						|
          var cij = void 0; // values in b column j
 | 
						|
 | 
						|
          for (var kb = kb0; kb < kb1; kb++) {
 | 
						|
            // row
 | 
						|
            var ib = bindex[kb]; // check value has been initialized
 | 
						|
 | 
						|
            if (last !== mark) {
 | 
						|
              // first value in column jb
 | 
						|
              cij = mf(adata[i][ib], bvalues[kb]); // update mark
 | 
						|
 | 
						|
              last = mark;
 | 
						|
            } else {
 | 
						|
              // accumulate value
 | 
						|
              cij = af(cij, mf(adata[i][ib], bvalues[kb]));
 | 
						|
            }
 | 
						|
          } // check column has been processed and value != 0
 | 
						|
 | 
						|
 | 
						|
          if (last === mark && !eq(cij, zero)) {
 | 
						|
            // push row & value
 | 
						|
            cindex.push(i);
 | 
						|
            cvalues.push(cij);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } // update ptr
 | 
						|
 | 
						|
 | 
						|
    cptr[bcolumns] = cindex.length; // return sparse matrix
 | 
						|
 | 
						|
    return c;
 | 
						|
  }
 | 
						|
  /**
 | 
						|
   * C = A * B
 | 
						|
   *
 | 
						|
   * @param {Matrix} a            SparseMatrix    (MxN)
 | 
						|
   * @param {Matrix} b            Dense Vector (N)
 | 
						|
   *
 | 
						|
   * @return {Matrix}             SparseMatrix    (M, 1)
 | 
						|
   */
 | 
						|
 | 
						|
 | 
						|
  function _multiplySparseMatrixVector(a, b) {
 | 
						|
    // a sparse
 | 
						|
    var avalues = a._values;
 | 
						|
    var aindex = a._index;
 | 
						|
    var aptr = a._ptr;
 | 
						|
    var adt = a._datatype; // validate a matrix
 | 
						|
 | 
						|
    if (!avalues) {
 | 
						|
      throw new Error('Cannot multiply Pattern only Matrix times Dense Matrix');
 | 
						|
    } // b dense
 | 
						|
 | 
						|
 | 
						|
    var bdata = b._data;
 | 
						|
    var bdt = b._datatype; // rows & columns
 | 
						|
 | 
						|
    var arows = a._size[0];
 | 
						|
    var brows = b._size[0]; // result
 | 
						|
 | 
						|
    var cvalues = [];
 | 
						|
    var cindex = [];
 | 
						|
    var cptr = []; // datatype
 | 
						|
 | 
						|
    var dt; // addScalar signature to use
 | 
						|
 | 
						|
    var af = addScalar; // multiplyScalar signature to use
 | 
						|
 | 
						|
    var mf = multiplyScalar; // equalScalar signature to use
 | 
						|
 | 
						|
    var eq = equalScalar; // zero value
 | 
						|
 | 
						|
    var zero = 0; // process data types
 | 
						|
 | 
						|
    if (adt && bdt && adt === bdt && typeof adt === 'string') {
 | 
						|
      // datatype
 | 
						|
      dt = adt; // find signatures that matches (dt, dt)
 | 
						|
 | 
						|
      af = typed.find(addScalar, [dt, dt]);
 | 
						|
      mf = typed.find(multiplyScalar, [dt, dt]);
 | 
						|
      eq = typed.find(equalScalar, [dt, dt]); // convert 0 to the same datatype
 | 
						|
 | 
						|
      zero = typed.convert(0, dt);
 | 
						|
    } // workspace
 | 
						|
 | 
						|
 | 
						|
    var x = []; // vector with marks indicating a value x[i] exists in a given column
 | 
						|
 | 
						|
    var w = []; // update ptr
 | 
						|
 | 
						|
    cptr[0] = 0; // rows in b
 | 
						|
 | 
						|
    for (var ib = 0; ib < brows; ib++) {
 | 
						|
      // b[ib]
 | 
						|
      var vbi = bdata[ib]; // check b[ib] != 0, avoid loops
 | 
						|
 | 
						|
      if (!eq(vbi, zero)) {
 | 
						|
        // A values & index in ib column
 | 
						|
        for (var ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
 | 
						|
          // a row
 | 
						|
          var ia = aindex[ka]; // check value exists in current j
 | 
						|
 | 
						|
          if (!w[ia]) {
 | 
						|
            // ia is new entry in j
 | 
						|
            w[ia] = true; // add i to pattern of C
 | 
						|
 | 
						|
            cindex.push(ia); // x(ia) = A
 | 
						|
 | 
						|
            x[ia] = mf(vbi, avalues[ka]);
 | 
						|
          } else {
 | 
						|
            // i exists in C already
 | 
						|
            x[ia] = af(x[ia], mf(vbi, avalues[ka]));
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } // copy values from x to column jb of c
 | 
						|
 | 
						|
 | 
						|
    for (var p1 = cindex.length, p = 0; p < p1; p++) {
 | 
						|
      // row
 | 
						|
      var ic = cindex[p]; // copy value
 | 
						|
 | 
						|
      cvalues[p] = x[ic];
 | 
						|
    } // update ptr
 | 
						|
 | 
						|
 | 
						|
    cptr[1] = cindex.length; // return sparse matrix
 | 
						|
 | 
						|
    return a.createSparseMatrix({
 | 
						|
      values: cvalues,
 | 
						|
      index: cindex,
 | 
						|
      ptr: cptr,
 | 
						|
      size: [arows, 1],
 | 
						|
      datatype: dt
 | 
						|
    });
 | 
						|
  }
 | 
						|
  /**
 | 
						|
   * C = A * B
 | 
						|
   *
 | 
						|
   * @param {Matrix} a            SparseMatrix      (MxN)
 | 
						|
   * @param {Matrix} b            DenseMatrix       (NxC)
 | 
						|
   *
 | 
						|
   * @return {Matrix}             SparseMatrix      (MxC)
 | 
						|
   */
 | 
						|
 | 
						|
 | 
						|
  function _multiplySparseMatrixDenseMatrix(a, b) {
 | 
						|
    // a sparse
 | 
						|
    var avalues = a._values;
 | 
						|
    var aindex = a._index;
 | 
						|
    var aptr = a._ptr;
 | 
						|
    var adt = a._datatype; // validate a matrix
 | 
						|
 | 
						|
    if (!avalues) {
 | 
						|
      throw new Error('Cannot multiply Pattern only Matrix times Dense Matrix');
 | 
						|
    } // b dense
 | 
						|
 | 
						|
 | 
						|
    var bdata = b._data;
 | 
						|
    var bdt = b._datatype; // rows & columns
 | 
						|
 | 
						|
    var arows = a._size[0];
 | 
						|
    var brows = b._size[0];
 | 
						|
    var bcolumns = b._size[1]; // datatype
 | 
						|
 | 
						|
    var dt; // addScalar signature to use
 | 
						|
 | 
						|
    var af = addScalar; // multiplyScalar signature to use
 | 
						|
 | 
						|
    var mf = multiplyScalar; // equalScalar signature to use
 | 
						|
 | 
						|
    var eq = equalScalar; // zero value
 | 
						|
 | 
						|
    var zero = 0; // process data types
 | 
						|
 | 
						|
    if (adt && bdt && adt === bdt && typeof adt === 'string') {
 | 
						|
      // datatype
 | 
						|
      dt = adt; // find signatures that matches (dt, dt)
 | 
						|
 | 
						|
      af = typed.find(addScalar, [dt, dt]);
 | 
						|
      mf = typed.find(multiplyScalar, [dt, dt]);
 | 
						|
      eq = typed.find(equalScalar, [dt, dt]); // convert 0 to the same datatype
 | 
						|
 | 
						|
      zero = typed.convert(0, dt);
 | 
						|
    } // result
 | 
						|
 | 
						|
 | 
						|
    var cvalues = [];
 | 
						|
    var cindex = [];
 | 
						|
    var cptr = []; // c matrix
 | 
						|
 | 
						|
    var c = a.createSparseMatrix({
 | 
						|
      values: cvalues,
 | 
						|
      index: cindex,
 | 
						|
      ptr: cptr,
 | 
						|
      size: [arows, bcolumns],
 | 
						|
      datatype: dt
 | 
						|
    }); // workspace
 | 
						|
 | 
						|
    var x = []; // vector with marks indicating a value x[i] exists in a given column
 | 
						|
 | 
						|
    var w = []; // loop b columns
 | 
						|
 | 
						|
    for (var jb = 0; jb < bcolumns; jb++) {
 | 
						|
      // update ptr
 | 
						|
      cptr[jb] = cindex.length; // mark in workspace for current column
 | 
						|
 | 
						|
      var mark = jb + 1; // rows in jb
 | 
						|
 | 
						|
      for (var ib = 0; ib < brows; ib++) {
 | 
						|
        // b[ib, jb]
 | 
						|
        var vbij = bdata[ib][jb]; // check b[ib, jb] != 0, avoid loops
 | 
						|
 | 
						|
        if (!eq(vbij, zero)) {
 | 
						|
          // A values & index in ib column
 | 
						|
          for (var ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
 | 
						|
            // a row
 | 
						|
            var ia = aindex[ka]; // check value exists in current j
 | 
						|
 | 
						|
            if (w[ia] !== mark) {
 | 
						|
              // ia is new entry in j
 | 
						|
              w[ia] = mark; // add i to pattern of C
 | 
						|
 | 
						|
              cindex.push(ia); // x(ia) = A
 | 
						|
 | 
						|
              x[ia] = mf(vbij, avalues[ka]);
 | 
						|
            } else {
 | 
						|
              // i exists in C already
 | 
						|
              x[ia] = af(x[ia], mf(vbij, avalues[ka]));
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } // copy values from x to column jb of c
 | 
						|
 | 
						|
 | 
						|
      for (var p0 = cptr[jb], p1 = cindex.length, p = p0; p < p1; p++) {
 | 
						|
        // row
 | 
						|
        var ic = cindex[p]; // copy value
 | 
						|
 | 
						|
        cvalues[p] = x[ic];
 | 
						|
      }
 | 
						|
    } // update ptr
 | 
						|
 | 
						|
 | 
						|
    cptr[bcolumns] = cindex.length; // return sparse matrix
 | 
						|
 | 
						|
    return c;
 | 
						|
  }
 | 
						|
  /**
 | 
						|
   * C = A * B
 | 
						|
   *
 | 
						|
   * @param {Matrix} a            SparseMatrix      (MxN)
 | 
						|
   * @param {Matrix} b            SparseMatrix      (NxC)
 | 
						|
   *
 | 
						|
   * @return {Matrix}             SparseMatrix      (MxC)
 | 
						|
   */
 | 
						|
 | 
						|
 | 
						|
  function _multiplySparseMatrixSparseMatrix(a, b) {
 | 
						|
    // a sparse
 | 
						|
    var avalues = a._values;
 | 
						|
    var aindex = a._index;
 | 
						|
    var aptr = a._ptr;
 | 
						|
    var adt = a._datatype; // b sparse
 | 
						|
 | 
						|
    var bvalues = b._values;
 | 
						|
    var bindex = b._index;
 | 
						|
    var bptr = b._ptr;
 | 
						|
    var bdt = b._datatype; // rows & columns
 | 
						|
 | 
						|
    var arows = a._size[0];
 | 
						|
    var bcolumns = b._size[1]; // flag indicating both matrices (a & b) contain data
 | 
						|
 | 
						|
    var values = avalues && bvalues; // datatype
 | 
						|
 | 
						|
    var dt; // addScalar signature to use
 | 
						|
 | 
						|
    var af = addScalar; // multiplyScalar signature to use
 | 
						|
 | 
						|
    var mf = multiplyScalar; // process data types
 | 
						|
 | 
						|
    if (adt && bdt && adt === bdt && typeof adt === 'string') {
 | 
						|
      // datatype
 | 
						|
      dt = adt; // find signatures that matches (dt, dt)
 | 
						|
 | 
						|
      af = typed.find(addScalar, [dt, dt]);
 | 
						|
      mf = typed.find(multiplyScalar, [dt, dt]);
 | 
						|
    } // result
 | 
						|
 | 
						|
 | 
						|
    var cvalues = values ? [] : undefined;
 | 
						|
    var cindex = [];
 | 
						|
    var cptr = []; // c matrix
 | 
						|
 | 
						|
    var c = a.createSparseMatrix({
 | 
						|
      values: cvalues,
 | 
						|
      index: cindex,
 | 
						|
      ptr: cptr,
 | 
						|
      size: [arows, bcolumns],
 | 
						|
      datatype: dt
 | 
						|
    }); // workspace
 | 
						|
 | 
						|
    var x = values ? [] : undefined; // vector with marks indicating a value x[i] exists in a given column
 | 
						|
 | 
						|
    var w = []; // variables
 | 
						|
 | 
						|
    var ka, ka0, ka1, kb, kb0, kb1, ia, ib; // loop b columns
 | 
						|
 | 
						|
    for (var jb = 0; jb < bcolumns; jb++) {
 | 
						|
      // update ptr
 | 
						|
      cptr[jb] = cindex.length; // mark in workspace for current column
 | 
						|
 | 
						|
      var mark = jb + 1; // B values & index in j
 | 
						|
 | 
						|
      for (kb0 = bptr[jb], kb1 = bptr[jb + 1], kb = kb0; kb < kb1; kb++) {
 | 
						|
        // b row
 | 
						|
        ib = bindex[kb]; // check we need to process values
 | 
						|
 | 
						|
        if (values) {
 | 
						|
          // loop values in a[:,ib]
 | 
						|
          for (ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
 | 
						|
            // row
 | 
						|
            ia = aindex[ka]; // check value exists in current j
 | 
						|
 | 
						|
            if (w[ia] !== mark) {
 | 
						|
              // ia is new entry in j
 | 
						|
              w[ia] = mark; // add i to pattern of C
 | 
						|
 | 
						|
              cindex.push(ia); // x(ia) = A
 | 
						|
 | 
						|
              x[ia] = mf(bvalues[kb], avalues[ka]);
 | 
						|
            } else {
 | 
						|
              // i exists in C already
 | 
						|
              x[ia] = af(x[ia], mf(bvalues[kb], avalues[ka]));
 | 
						|
            }
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          // loop values in a[:,ib]
 | 
						|
          for (ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
 | 
						|
            // row
 | 
						|
            ia = aindex[ka]; // check value exists in current j
 | 
						|
 | 
						|
            if (w[ia] !== mark) {
 | 
						|
              // ia is new entry in j
 | 
						|
              w[ia] = mark; // add i to pattern of C
 | 
						|
 | 
						|
              cindex.push(ia);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } // check we need to process matrix values (pattern matrix)
 | 
						|
 | 
						|
 | 
						|
      if (values) {
 | 
						|
        // copy values from x to column jb of c
 | 
						|
        for (var p0 = cptr[jb], p1 = cindex.length, p = p0; p < p1; p++) {
 | 
						|
          // row
 | 
						|
          var ic = cindex[p]; // copy value
 | 
						|
 | 
						|
          cvalues[p] = x[ic];
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } // update ptr
 | 
						|
 | 
						|
 | 
						|
    cptr[bcolumns] = cindex.length; // return sparse matrix
 | 
						|
 | 
						|
    return c;
 | 
						|
  }
 | 
						|
  /**
 | 
						|
   * Multiply two or more values, `x * y`.
 | 
						|
   * For matrices, the matrix product is calculated.
 | 
						|
   *
 | 
						|
   * Syntax:
 | 
						|
   *
 | 
						|
   *    math.multiply(x, y)
 | 
						|
   *    math.multiply(x, y, z, ...)
 | 
						|
   *
 | 
						|
   * Examples:
 | 
						|
   *
 | 
						|
   *    math.multiply(4, 5.2)        // returns number 20.8
 | 
						|
   *    math.multiply(2, 3, 4)       // returns number 24
 | 
						|
   *
 | 
						|
   *    const a = math.complex(2, 3)
 | 
						|
   *    const b = math.complex(4, 1)
 | 
						|
   *    math.multiply(a, b)          // returns Complex 5 + 14i
 | 
						|
   *
 | 
						|
   *    const c = [[1, 2], [4, 3]]
 | 
						|
   *    const d = [[1, 2, 3], [3, -4, 7]]
 | 
						|
   *    math.multiply(c, d)          // returns Array [[7, -6, 17], [13, -4, 33]]
 | 
						|
   *
 | 
						|
   *    const e = math.unit('2.1 km')
 | 
						|
   *    math.multiply(3, e)          // returns Unit 6.3 km
 | 
						|
   *
 | 
						|
   * See also:
 | 
						|
   *
 | 
						|
   *    divide, prod, cross, dot
 | 
						|
   *
 | 
						|
   * @param  {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} x First value to multiply
 | 
						|
   * @param  {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} y Second value to multiply
 | 
						|
   * @return {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} Multiplication of `x` and `y`
 | 
						|
   */
 | 
						|
 | 
						|
 | 
						|
  return typed(name, (0, _object.extend)({
 | 
						|
    // we extend the signatures of multiplyScalar with signatures dealing with matrices
 | 
						|
    'Array, Array': function ArrayArray(x, y) {
 | 
						|
      // check dimensions
 | 
						|
      _validateMatrixDimensions((0, _array.arraySize)(x), (0, _array.arraySize)(y)); // use dense matrix implementation
 | 
						|
 | 
						|
 | 
						|
      var m = this(matrix(x), matrix(y)); // return array or scalar
 | 
						|
 | 
						|
      return (0, _is.isMatrix)(m) ? m.valueOf() : m;
 | 
						|
    },
 | 
						|
    'Matrix, Matrix': function MatrixMatrix(x, y) {
 | 
						|
      // dimensions
 | 
						|
      var xsize = x.size();
 | 
						|
      var ysize = y.size(); // check dimensions
 | 
						|
 | 
						|
      _validateMatrixDimensions(xsize, ysize); // process dimensions
 | 
						|
 | 
						|
 | 
						|
      if (xsize.length === 1) {
 | 
						|
        // process y dimensions
 | 
						|
        if (ysize.length === 1) {
 | 
						|
          // Vector * Vector
 | 
						|
          return _multiplyVectorVector(x, y, xsize[0]);
 | 
						|
        } // Vector * Matrix
 | 
						|
 | 
						|
 | 
						|
        return _multiplyVectorMatrix(x, y);
 | 
						|
      } // process y dimensions
 | 
						|
 | 
						|
 | 
						|
      if (ysize.length === 1) {
 | 
						|
        // Matrix * Vector
 | 
						|
        return _multiplyMatrixVector(x, y);
 | 
						|
      } // Matrix * Matrix
 | 
						|
 | 
						|
 | 
						|
      return _multiplyMatrixMatrix(x, y);
 | 
						|
    },
 | 
						|
    'Matrix, Array': function MatrixArray(x, y) {
 | 
						|
      // use Matrix * Matrix implementation
 | 
						|
      return this(x, matrix(y));
 | 
						|
    },
 | 
						|
    'Array, Matrix': function ArrayMatrix(x, y) {
 | 
						|
      // use Matrix * Matrix implementation
 | 
						|
      return this(matrix(x, y.storage()), y);
 | 
						|
    },
 | 
						|
    'SparseMatrix, any': function SparseMatrixAny(x, y) {
 | 
						|
      return algorithm11(x, y, multiplyScalar, false);
 | 
						|
    },
 | 
						|
    'DenseMatrix, any': function DenseMatrixAny(x, y) {
 | 
						|
      return algorithm14(x, y, multiplyScalar, false);
 | 
						|
    },
 | 
						|
    'any, SparseMatrix': function anySparseMatrix(x, y) {
 | 
						|
      return algorithm11(y, x, multiplyScalar, true);
 | 
						|
    },
 | 
						|
    'any, DenseMatrix': function anyDenseMatrix(x, y) {
 | 
						|
      return algorithm14(y, x, multiplyScalar, true);
 | 
						|
    },
 | 
						|
    'Array, any': function ArrayAny(x, y) {
 | 
						|
      // use matrix implementation
 | 
						|
      return algorithm14(matrix(x), y, multiplyScalar, false).valueOf();
 | 
						|
    },
 | 
						|
    'any, Array': function anyArray(x, y) {
 | 
						|
      // use matrix implementation
 | 
						|
      return algorithm14(matrix(y), x, multiplyScalar, true).valueOf();
 | 
						|
    },
 | 
						|
    'any, any': multiplyScalar,
 | 
						|
    'any, any, ...any': function anyAnyAny(x, y, rest) {
 | 
						|
      var result = this(x, y);
 | 
						|
 | 
						|
      for (var i = 0; i < rest.length; i++) {
 | 
						|
        result = this(result, rest[i]);
 | 
						|
      }
 | 
						|
 | 
						|
      return result;
 | 
						|
    }
 | 
						|
  }, multiplyScalar.signatures));
 | 
						|
});
 | 
						|
exports.createMultiply = createMultiply; |