301 lines
11 KiB
HTML
301 lines
11 KiB
HTML
<!DOCTYPE html>
|
|
<html lang="en">
|
|
|
|
<head>
|
|
<meta charset="utf-8">
|
|
<title>math.js | rocket trajectory optimization</title>
|
|
|
|
<script src="../../lib/browser/math.js"></script>
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.5.0/Chart.min.js"></script>
|
|
|
|
<style>
|
|
body {
|
|
font-family: sans-serif;
|
|
}
|
|
|
|
#canvas-grid {
|
|
display: grid;
|
|
grid-template-columns: repeat(2, 1fr);
|
|
gap: 5%;
|
|
margin-top: 5%;
|
|
}
|
|
|
|
#canvas-grid>div {
|
|
overflow: hidden;
|
|
}
|
|
</style>
|
|
</head>
|
|
|
|
<body>
|
|
<h1>Rocket trajectory optimization</h1>
|
|
<p>
|
|
This example simulates the launch of a SpaceX Falcon 9 modeled using a system of ordinary differential equations.
|
|
</p>
|
|
|
|
<canvas id="canvas" width="1600" height="600"></canvas>
|
|
<div id="canvas-grid"></div>
|
|
|
|
<script>
|
|
// Solve ODE `dx/dt = f(x,t), x(0) = x0` numerically.
|
|
function ndsolve(f, x0, dt, tmax) {
|
|
let x = x0.clone() // Current values of variables
|
|
const result = [x] // Contains entire solution
|
|
const nsteps = math.divide(tmax, dt) // Number of time steps
|
|
for (let i = 0; i < nsteps; i++) {
|
|
// Compute derivatives
|
|
const dxdt = f.map(func => func(...x.toArray()))
|
|
// Euler method to compute next time step
|
|
const dx = math.multiply(dxdt, dt)
|
|
x = math.add(x, dx)
|
|
result.push(x)
|
|
}
|
|
return math.matrix(result)
|
|
}
|
|
|
|
// Import the numerical ODE solver
|
|
math.import({ ndsolve })
|
|
|
|
// Create a math.js context for our simulation. Everything else occurs in the context of the expression parser!
|
|
const sim = math.parser()
|
|
|
|
sim.evaluate("G = 6.67408e-11 m^3 kg^-1 s^-2") // Gravitational constant
|
|
sim.evaluate("mbody = 5.9724e24 kg") // Mass of Earth
|
|
sim.evaluate("mu = G * mbody") // Standard gravitational parameter
|
|
sim.evaluate("g0 = 9.80665 m/s^2") // Standard gravity: used for calculating prop consumption (dmdt)
|
|
sim.evaluate("r0 = 6371 km") // Mean radius of Earth
|
|
sim.evaluate("t0 = 0 s") // Simulation start
|
|
sim.evaluate("dt = 0.5 s") // Simulation timestep
|
|
sim.evaluate("tfinal = 149.5 s") // Simulation duration
|
|
sim.evaluate("isp_sea = 282 s") // Specific impulse (at sea level)
|
|
sim.evaluate("isp_vac = 311 s") // Specific impulse (in vacuum)
|
|
sim.evaluate("gamma0 = 89.99970 deg") // Initial pitch angle (90 deg is vertical)
|
|
sim.evaluate("v0 = 1 m/s") // Initial velocity (must be non-zero because ODE is ill-conditioned)
|
|
sim.evaluate("phi0 = 0 deg") // Initial orbital reference angle
|
|
sim.evaluate("m1 = 433100 kg") // First stage mass
|
|
sim.evaluate("m2 = 111500 kg") // Second stage mass
|
|
sim.evaluate("m3 = 1700 kg") // Third stage / fairing mass
|
|
sim.evaluate("mp = 5000 kg") // Payload mass
|
|
sim.evaluate("m0 = m1+m2+m3+mp") // Initial mass of rocket
|
|
sim.evaluate("dm = 2750 kg/s") // Mass flow rate
|
|
sim.evaluate("A = (3.66 m)^2 * pi") // Area of the rocket
|
|
sim.evaluate("dragCoef = 0.2") // Drag coefficient
|
|
|
|
// Define the equations of motion. We just thrust into current direction of motion, e.g. making a gravity turn.
|
|
sim.evaluate("gravity(r) = mu / r^2")
|
|
sim.evaluate("angVel(r, v, gamma) = v/r * cos(gamma) * rad") // Angular velocity of rocket around moon
|
|
sim.evaluate("density(r) = 1.2250 kg/m^3 * exp(-g0 * (r - r0) / (83246.8 m^2/s^2))") // Assume constant temperature
|
|
sim.evaluate("drag(r, v) = 1/2 * density(r) .* v.^2 * A * dragCoef")
|
|
sim.evaluate("isp(r) = isp_vac + (isp_sea - isp_vac) * density(r)/density(r0)") // pressure ~ density for constant temperature
|
|
sim.evaluate("thrust(isp) = g0 * isp * dm")
|
|
// It is important to maintain the same argument order for each of these functions.
|
|
sim.evaluate("drdt(r, v, m, phi, gamma, t) = v sin(gamma)")
|
|
sim.evaluate("dvdt(r, v, m, phi, gamma, t) = - gravity(r) * sin(gamma) + (thrust(isp(r)) - drag(r, v)) / m")
|
|
sim.evaluate("dmdt(r, v, m, phi, gamma, t) = - dm")
|
|
sim.evaluate("dphidt(r, v, m, phi, gamma, t) = angVel(r, v, gamma)")
|
|
sim.evaluate("dgammadt(r, v, m, phi, gamma, t) = angVel(r, v, gamma) - gravity(r) * cos(gamma) / v * rad")
|
|
sim.evaluate("dtdt(r, v, m, phi, gamma, t) = 1")
|
|
|
|
// Remember to maintain the same variable order in the call to ndsolve.
|
|
sim.evaluate("result_stage1 = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt, dtdt], [r0, v0, m0, phi0, gamma0, t0], dt, tfinal)")
|
|
|
|
// Reset initial conditions for interstage flight
|
|
sim.evaluate("dm = 0 kg/s")
|
|
sim.evaluate("tfinal = 10 s")
|
|
sim.evaluate("x = flatten(result_stage1[end,:])")
|
|
sim.evaluate("x[3] = m2+m3+mp") // New mass after stage seperation
|
|
sim.evaluate("result_interstage = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt, dtdt], x, dt, tfinal)")
|
|
|
|
// Reset initial conditions for stage 2 flight
|
|
sim.evaluate("dm = 270.8 kg/s")
|
|
sim.evaluate("isp_vac = 348 s")
|
|
sim.evaluate("tfinal = 350 s")
|
|
sim.evaluate("x = flatten(result_interstage[end,:])")
|
|
sim.evaluate("result_stage2 = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt, dtdt], x, dt, tfinal)")
|
|
|
|
// Reset initial conditions for unpowered flight
|
|
sim.evaluate("dm = 0 kg/s")
|
|
sim.evaluate("tfinal = 900 s")
|
|
sim.evaluate("dt = 10 s")
|
|
sim.evaluate("x = flatten(result_stage2[end,:])")
|
|
sim.evaluate("result_unpowered1 = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt, dtdt], x, dt, tfinal)")
|
|
|
|
// Reset initial conditions for final orbit insertion
|
|
sim.evaluate("dm = 270.8 kg/s")
|
|
sim.evaluate("tfinal = 39 s")
|
|
sim.evaluate("dt = 0.5 s")
|
|
sim.evaluate("x = flatten(result_unpowered1[end,:])")
|
|
sim.evaluate("result_insertion = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt, dtdt], x, dt, tfinal)")
|
|
|
|
// Reset initial conditions for unpowered flight
|
|
sim.evaluate("dm = 0 kg/s")
|
|
sim.evaluate("tfinal = 250 s")
|
|
sim.evaluate("dt = 10 s")
|
|
sim.evaluate("x = flatten(result_insertion[end,:])")
|
|
sim.evaluate("result_unpowered2 = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt, dtdt], x, dt, tfinal)")
|
|
|
|
// Now it's time to prepare results for plotting
|
|
const resultNames = ['stage1', 'interstage', 'stage2', 'unpowered1', 'insertion', 'unpowered2']
|
|
.map(stageName => `result_${stageName}`)
|
|
|
|
// Concat result matrices
|
|
sim.set('result',
|
|
math.concat(
|
|
...resultNames.map(resultName =>
|
|
sim.evaluate(`${resultName}[:end-1, :]`) // Avoid overlap
|
|
),
|
|
0 // Concat in row-dimension
|
|
)
|
|
)
|
|
|
|
const mainDatasets = resultNames.map((resultName, i) => ({
|
|
label: resultName.slice(7),
|
|
data: sim.evaluate(
|
|
'concat('
|
|
+ `(${resultName}[:,4] - phi0) * r0 / rad / km,` // Surface distance from start (in km)
|
|
+ `(${resultName}[:,1] - r0) / km` // Height above surface (in km)
|
|
+ ')'
|
|
).toArray().map(([x, y]) => ({ x, y })),
|
|
borderColor: i % 2 ? '#999' : '#dc3912',
|
|
fill: false,
|
|
pointRadius: 0,
|
|
}))
|
|
new Chart(document.getElementById('canvas'), {
|
|
type: 'line',
|
|
data: { datasets: mainDatasets },
|
|
options: getMainChartOptions()
|
|
})
|
|
|
|
createChart([{
|
|
label: 'velocity (in m/s)',
|
|
data: sim.evaluate("result[:,[2,6]]")
|
|
.toArray()
|
|
.map(([v, t]) => ({ x: t.toNumber('s'), y: v.toNumber('m/s') }))
|
|
}])
|
|
createChart([{
|
|
label: 'height (in km)',
|
|
data: sim.evaluate("concat((result[:, 1] - r0), result[:, 6])")
|
|
.toArray()
|
|
.map(([r, t]) => ({ x: t.toNumber('s'), y: r.toNumber('km') })),
|
|
}])
|
|
createChart([{
|
|
label: 'gamma (in deg)',
|
|
data: sim.evaluate("result[:, [5,6]]")
|
|
.toArray()
|
|
.map(([gamma, t]) => ({ x: t.toNumber('s'), y: gamma.toNumber('deg') })),
|
|
}])
|
|
createChart([{
|
|
label: 'acceleration (in m/s^2)',
|
|
data: sim.evaluate("concat(diff(result[:, 2]) ./ diff(result[:, 6]), result[:end-1, 6])")
|
|
.toArray()
|
|
.map(([acc, t]) => ({ x: t.toNumber('s'), y: acc.toNumber('m/s^2') })),
|
|
}])
|
|
createChart([{
|
|
label: 'drag acceleration (in m/s^2)',
|
|
data: sim.evaluate("concat(drag(result[:, 1], result[:, 2]) ./ result[:, 3], result[:, 6])")
|
|
.toArray()
|
|
.map(([dragAcc, t]) => ({ x: t.toNumber('s'), y: dragAcc.toNumber('m/s^2') })),
|
|
}])
|
|
createChart(
|
|
[
|
|
{
|
|
data: sim.evaluate("result[:, [1,4]]")
|
|
.toArray()
|
|
.map(([r, phi]) => math.rotate([r.toNumber('km'), 0], phi))
|
|
.map(([x, y]) => ({ x, y })),
|
|
},
|
|
{
|
|
data: sim.evaluate("map(0:0.25:360, function(angle) = rotate([r0/km, 0], angle))")
|
|
.toArray()
|
|
.map(([x, y]) => ({ x, y })),
|
|
borderColor: "#999",
|
|
fill: true
|
|
}
|
|
],
|
|
getEarthChartOptions()
|
|
)
|
|
|
|
// Helper functions for plotting data (nothing to learn about math.js from here on)
|
|
function createChart(datasets, options = {}) {
|
|
const container = document.createElement("div")
|
|
document.querySelector("#canvas-grid").appendChild(container)
|
|
const canvas = document.createElement("canvas")
|
|
container.appendChild(canvas)
|
|
new Chart(canvas, {
|
|
type: 'line',
|
|
data: {
|
|
datasets: datasets.map(dataset => ({
|
|
borderColor: "#dc3912",
|
|
fill: false,
|
|
pointRadius: 0,
|
|
...dataset
|
|
}))
|
|
},
|
|
options: getChartOptions(options)
|
|
})
|
|
}
|
|
|
|
function getMainChartOptions() {
|
|
return {
|
|
scales: {
|
|
xAxes: [{
|
|
type: 'linear',
|
|
position: 'bottom',
|
|
scaleLabel: {
|
|
display: true,
|
|
labelString: 'surface distance travelled (in km)'
|
|
}
|
|
}],
|
|
yAxes: [{
|
|
type: 'linear',
|
|
scaleLabel: {
|
|
display: true,
|
|
labelString: 'height above surface (in km)'
|
|
}
|
|
}]
|
|
},
|
|
animation: false
|
|
}
|
|
}
|
|
|
|
function getChartOptions(options) {
|
|
return {
|
|
scales: {
|
|
xAxes: [{
|
|
type: 'linear',
|
|
position: 'bottom',
|
|
scaleLabel: {
|
|
display: true,
|
|
labelString: 'time (in s)'
|
|
}
|
|
}]
|
|
},
|
|
animation: false,
|
|
...options
|
|
}
|
|
}
|
|
|
|
function getEarthChartOptions() {
|
|
return {
|
|
aspectRatio: 1,
|
|
scales: {
|
|
xAxes: [{
|
|
type: 'linear',
|
|
position: 'bottom',
|
|
min: -8000,
|
|
max: 8000,
|
|
display: false
|
|
}],
|
|
yAxes: [{
|
|
type: 'linear',
|
|
min: -8000,
|
|
max: 8000,
|
|
display: false
|
|
}]
|
|
},
|
|
legend: { display: false }
|
|
}
|
|
}
|
|
</script>
|
|
</body>
|
|
|
|
</html> |