simple-squiggle/node_modules/mathjs/lib/esm/function/utils/isPrime.js

142 lines
3.8 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import { deepMap } from '../../utils/collection.js';
import { factory } from '../../utils/factory.js';
var name = 'isPrime';
var dependencies = ['typed'];
export var createIsPrime = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed
} = _ref;
/**
* Test whether a value is prime: has no divisors other than itself and one.
* The function supports type `number`, `bignumber`.
*
* The function is evaluated element-wise in case of Array or Matrix input.
*
* Syntax:
*
* math.isPrime(x)
*
* Examples:
*
* math.isPrime(3) // returns true
* math.isPrime(-2) // returns false
* math.isPrime(0) // returns false
* math.isPrime(-0) // returns false
* math.isPrime(0.5) // returns false
* math.isPrime('2') // returns true
* math.isPrime([2, 17, 100]) // returns [true, true, false]
*
* See also:
*
* isNumeric, isZero, isNegative, isInteger
*
* @param {number | BigNumber | Array | Matrix} x Value to be tested
* @return {boolean} Returns true when `x` is larger than zero.
* Throws an error in case of an unknown data type.
*/
return typed(name, {
number: function number(x) {
if (x * 0 !== 0) {
return false;
}
if (x <= 3) {
return x > 1;
}
if (x % 2 === 0 || x % 3 === 0) {
return false;
}
for (var i = 5; i * i <= x; i += 6) {
if (x % i === 0 || x % (i + 2) === 0) {
return false;
}
}
return true;
},
BigNumber: function BigNumber(n) {
if (n.toNumber() * 0 !== 0) {
return false;
}
if (n.lte(3)) return n.gt(1);
if (n.mod(2).eq(0) || n.mod(3).eq(0)) return false;
if (n.lt(Math.pow(2, 32))) {
var x = n.toNumber();
for (var i = 5; i * i <= x; i += 6) {
if (x % i === 0 || x % (i + 2) === 0) {
return false;
}
}
return true;
}
function modPow(base, exponent, modulus) {
// exponent can be huge, use non-recursive variant
var accumulator = 1;
while (!exponent.eq(0)) {
if (exponent.mod(2).eq(0)) {
exponent = exponent.div(2);
base = base.mul(base).mod(modulus);
} else {
exponent = exponent.sub(1);
accumulator = base.mul(accumulator).mod(modulus);
}
}
return accumulator;
} // https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants
var Decimal = n.constructor.clone({
precision: n.toFixed(0).length * 2
});
n = new Decimal(n);
var r = 0;
var d = n.sub(1);
while (d.mod(2).eq(0)) {
d = d.div(2);
r += 1;
}
var bases = null; // https://en.wikipedia.org/wiki/MillerRabin_primality_test#Testing_against_small_sets_of_bases
if (n.lt('3317044064679887385961981')) {
bases = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41].filter(x => x < n);
} else {
var max = Math.min(n.toNumber() - 2, Math.floor(2 * Math.pow(n.toFixed(0).length * Math.log(10), 2)));
bases = [];
for (var _i = 2; _i <= max; _i += 1) {
bases.push(max);
}
}
for (var _i2 = 0; _i2 < bases.length; _i2 += 1) {
var a = bases[_i2];
var adn = modPow(n.sub(n).add(a), d, n);
if (!adn.eq(1)) {
for (var _i3 = 0, _x = adn; !_x.eq(n.sub(1)); _i3 += 1, _x = _x.mul(_x).mod(n)) {
if (_i3 === r - 1) {
return false;
}
}
}
}
return true;
},
'Array | Matrix': function ArrayMatrix(x) {
return deepMap(x, this);
}
});
});