simple-squiggle/node_modules/mathjs/lib/esm/function/statistics/std.js

93 lines
3.5 KiB
JavaScript

import { factory } from '../../utils/factory.js';
var name = 'std';
var dependencies = ['typed', 'sqrt', 'variance'];
export var createStd = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
sqrt,
variance
} = _ref;
/**
* Compute the standard deviation of a matrix or a list with values.
* The standard deviations is defined as the square root of the variance:
* `std(A) = sqrt(variance(A))`.
* In case of a (multi dimensional) array or matrix, the standard deviation
* over all elements will be calculated by default, unless an axis is specified
* in which case the standard deviation will be computed along that axis.
*
* Additionally, it is possible to compute the standard deviation along the rows
* or columns of a matrix by specifying the dimension as the second argument.
*
* Optionally, the type of normalization can be specified as the final
* parameter. The parameter `normalization` can be one of the following values:
*
* - 'unbiased' (default) The sum of squared errors is divided by (n - 1)
* - 'uncorrected' The sum of squared errors is divided by n
* - 'biased' The sum of squared errors is divided by (n + 1)
*
*
* Syntax:
*
* math.std(a, b, c, ...)
* math.std(A)
* math.std(A, normalization)
* math.std(A, dimension)
* math.std(A, dimension, normalization)
*
* Examples:
*
* math.std(2, 4, 6) // returns 2
* math.std([2, 4, 6, 8]) // returns 2.581988897471611
* math.std([2, 4, 6, 8], 'uncorrected') // returns 2.23606797749979
* math.std([2, 4, 6, 8], 'biased') // returns 2
*
* math.std([[1, 2, 3], [4, 5, 6]]) // returns 1.8708286933869707
* math.std([[1, 2, 3], [4, 6, 8]], 0) // returns [2.1213203435596424, 2.8284271247461903, 3.5355339059327378]
* math.std([[1, 2, 3], [4, 6, 8]], 1) // returns [1, 2]
* math.std([[1, 2, 3], [4, 6, 8]], 1, 'biased') // returns [0.7071067811865476, 1.4142135623730951]
*
* See also:
*
* mean, median, max, min, prod, sum, variance
*
* @param {Array | Matrix} array
* A single matrix or or multiple scalar values
* @param {string} [normalization='unbiased']
* Determines how to normalize the variance.
* Choose 'unbiased' (default), 'uncorrected', or 'biased'.
* @param dimension {number | BigNumber}
* Determines the axis to compute the standard deviation for a matrix
* @return {*} The standard deviation
*/
return typed(name, {
// std([a, b, c, d, ...])
'Array | Matrix': _std,
// std([a, b, c, d, ...], normalization)
'Array | Matrix, string': _std,
// std([a, b, c, c, ...], dim)
'Array | Matrix, number | BigNumber': _std,
// std([a, b, c, c, ...], dim, normalization)
'Array | Matrix, number | BigNumber, string': _std,
// std(a, b, c, d, ...)
'...': function _(args) {
return _std(args);
}
});
function _std(array, normalization) {
if (array.length === 0) {
throw new SyntaxError('Function std requires one or more parameters (0 provided)');
}
try {
return sqrt(variance.apply(null, arguments));
} catch (err) {
if (err instanceof TypeError && err.message.indexOf(' variance') !== -1) {
throw new TypeError(err.message.replace(' variance', ' std'));
} else {
throw err;
}
}
}
});