93 lines
3.5 KiB
JavaScript
93 lines
3.5 KiB
JavaScript
import { factory } from '../../utils/factory.js';
|
|
var name = 'std';
|
|
var dependencies = ['typed', 'sqrt', 'variance'];
|
|
export var createStd = /* #__PURE__ */factory(name, dependencies, _ref => {
|
|
var {
|
|
typed,
|
|
sqrt,
|
|
variance
|
|
} = _ref;
|
|
|
|
/**
|
|
* Compute the standard deviation of a matrix or a list with values.
|
|
* The standard deviations is defined as the square root of the variance:
|
|
* `std(A) = sqrt(variance(A))`.
|
|
* In case of a (multi dimensional) array or matrix, the standard deviation
|
|
* over all elements will be calculated by default, unless an axis is specified
|
|
* in which case the standard deviation will be computed along that axis.
|
|
*
|
|
* Additionally, it is possible to compute the standard deviation along the rows
|
|
* or columns of a matrix by specifying the dimension as the second argument.
|
|
*
|
|
* Optionally, the type of normalization can be specified as the final
|
|
* parameter. The parameter `normalization` can be one of the following values:
|
|
*
|
|
* - 'unbiased' (default) The sum of squared errors is divided by (n - 1)
|
|
* - 'uncorrected' The sum of squared errors is divided by n
|
|
* - 'biased' The sum of squared errors is divided by (n + 1)
|
|
*
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.std(a, b, c, ...)
|
|
* math.std(A)
|
|
* math.std(A, normalization)
|
|
* math.std(A, dimension)
|
|
* math.std(A, dimension, normalization)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.std(2, 4, 6) // returns 2
|
|
* math.std([2, 4, 6, 8]) // returns 2.581988897471611
|
|
* math.std([2, 4, 6, 8], 'uncorrected') // returns 2.23606797749979
|
|
* math.std([2, 4, 6, 8], 'biased') // returns 2
|
|
*
|
|
* math.std([[1, 2, 3], [4, 5, 6]]) // returns 1.8708286933869707
|
|
* math.std([[1, 2, 3], [4, 6, 8]], 0) // returns [2.1213203435596424, 2.8284271247461903, 3.5355339059327378]
|
|
* math.std([[1, 2, 3], [4, 6, 8]], 1) // returns [1, 2]
|
|
* math.std([[1, 2, 3], [4, 6, 8]], 1, 'biased') // returns [0.7071067811865476, 1.4142135623730951]
|
|
*
|
|
* See also:
|
|
*
|
|
* mean, median, max, min, prod, sum, variance
|
|
*
|
|
* @param {Array | Matrix} array
|
|
* A single matrix or or multiple scalar values
|
|
* @param {string} [normalization='unbiased']
|
|
* Determines how to normalize the variance.
|
|
* Choose 'unbiased' (default), 'uncorrected', or 'biased'.
|
|
* @param dimension {number | BigNumber}
|
|
* Determines the axis to compute the standard deviation for a matrix
|
|
* @return {*} The standard deviation
|
|
*/
|
|
return typed(name, {
|
|
// std([a, b, c, d, ...])
|
|
'Array | Matrix': _std,
|
|
// std([a, b, c, d, ...], normalization)
|
|
'Array | Matrix, string': _std,
|
|
// std([a, b, c, c, ...], dim)
|
|
'Array | Matrix, number | BigNumber': _std,
|
|
// std([a, b, c, c, ...], dim, normalization)
|
|
'Array | Matrix, number | BigNumber, string': _std,
|
|
// std(a, b, c, d, ...)
|
|
'...': function _(args) {
|
|
return _std(args);
|
|
}
|
|
});
|
|
|
|
function _std(array, normalization) {
|
|
if (array.length === 0) {
|
|
throw new SyntaxError('Function std requires one or more parameters (0 provided)');
|
|
}
|
|
|
|
try {
|
|
return sqrt(variance.apply(null, arguments));
|
|
} catch (err) {
|
|
if (err instanceof TypeError && err.message.indexOf(' variance') !== -1) {
|
|
throw new TypeError(err.message.replace(' variance', ' std'));
|
|
} else {
|
|
throw err;
|
|
}
|
|
}
|
|
}
|
|
}); |