simple-squiggle/node_modules/mathjs/lib/esm/function/probability/kldivergence.js

86 lines
2.1 KiB
JavaScript

import { factory } from '../../utils/factory.js';
var name = 'kldivergence';
var dependencies = ['typed', 'matrix', 'divide', 'sum', 'multiply', 'dotDivide', 'log', 'isNumeric'];
export var createKldivergence = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
matrix,
divide,
sum,
multiply,
dotDivide,
log,
isNumeric
} = _ref;
/**
* Calculate the Kullback-Leibler (KL) divergence between two distributions
*
* Syntax:
*
* math.kldivergence(x, y)
*
* Examples:
*
* math.kldivergence([0.7,0.5,0.4], [0.2,0.9,0.5]) //returns 0.24376698773121153
*
*
* @param {Array | Matrix} q First vector
* @param {Array | Matrix} p Second vector
* @return {number} Returns distance between q and p
*/
return typed(name, {
'Array, Array': function ArrayArray(q, p) {
return _kldiv(matrix(q), matrix(p));
},
'Matrix, Array': function MatrixArray(q, p) {
return _kldiv(q, matrix(p));
},
'Array, Matrix': function ArrayMatrix(q, p) {
return _kldiv(matrix(q), p);
},
'Matrix, Matrix': function MatrixMatrix(q, p) {
return _kldiv(q, p);
}
});
function _kldiv(q, p) {
var plength = p.size().length;
var qlength = q.size().length;
if (plength > 1) {
throw new Error('first object must be one dimensional');
}
if (qlength > 1) {
throw new Error('second object must be one dimensional');
}
if (plength !== qlength) {
throw new Error('Length of two vectors must be equal');
} // Before calculation, apply normalization
var sumq = sum(q);
if (sumq === 0) {
throw new Error('Sum of elements in first object must be non zero');
}
var sump = sum(p);
if (sump === 0) {
throw new Error('Sum of elements in second object must be non zero');
}
var qnorm = divide(q, sum(q));
var pnorm = divide(p, sum(p));
var result = sum(multiply(qnorm, log(dotDivide(qnorm, pnorm))));
if (isNumeric(result)) {
return result;
} else {
return Number.NaN;
}
}
});