280 lines
6.8 KiB
JavaScript
280 lines
6.8 KiB
JavaScript
import { factory } from '../../utils/factory.js';
|
||
import { format } from '../../utils/string.js';
|
||
import { createComplexEigs } from './eigs/complexEigs.js';
|
||
import { createRealSymmetric } from './eigs/realSymetric.js';
|
||
import { typeOf, isNumber, isBigNumber, isComplex, isFraction } from '../../utils/is.js';
|
||
var name = 'eigs'; // The absolute state of math.js's dependency system:
|
||
|
||
var dependencies = ['config', 'typed', 'matrix', 'addScalar', 'equal', 'subtract', 'abs', 'atan', 'cos', 'sin', 'multiplyScalar', 'divideScalar', 'inv', 'bignumber', 'multiply', 'add', 'larger', 'column', 'flatten', 'number', 'complex', 'sqrt', 'diag', 'qr', 'usolve', 'usolveAll', 'im', 're', 'smaller', 'matrixFromColumns', 'dot'];
|
||
export var createEigs = /* #__PURE__ */factory(name, dependencies, _ref => {
|
||
var {
|
||
config,
|
||
typed,
|
||
matrix,
|
||
addScalar,
|
||
subtract,
|
||
equal,
|
||
abs,
|
||
atan,
|
||
cos,
|
||
sin,
|
||
multiplyScalar,
|
||
divideScalar,
|
||
inv,
|
||
bignumber,
|
||
multiply,
|
||
add,
|
||
larger,
|
||
column,
|
||
flatten,
|
||
number,
|
||
complex,
|
||
sqrt,
|
||
diag,
|
||
qr,
|
||
usolve,
|
||
usolveAll,
|
||
im,
|
||
re,
|
||
smaller,
|
||
matrixFromColumns,
|
||
dot
|
||
} = _ref;
|
||
var doRealSymetric = createRealSymmetric({
|
||
config,
|
||
addScalar,
|
||
subtract,
|
||
column,
|
||
flatten,
|
||
equal,
|
||
abs,
|
||
atan,
|
||
cos,
|
||
sin,
|
||
multiplyScalar,
|
||
inv,
|
||
bignumber,
|
||
complex,
|
||
multiply,
|
||
add
|
||
});
|
||
var doComplexEigs = createComplexEigs({
|
||
config,
|
||
addScalar,
|
||
subtract,
|
||
multiply,
|
||
multiplyScalar,
|
||
flatten,
|
||
divideScalar,
|
||
sqrt,
|
||
abs,
|
||
bignumber,
|
||
diag,
|
||
qr,
|
||
inv,
|
||
usolve,
|
||
usolveAll,
|
||
equal,
|
||
complex,
|
||
larger,
|
||
smaller,
|
||
matrixFromColumns,
|
||
dot
|
||
});
|
||
/**
|
||
* Compute eigenvalues and eigenvectors of a matrix. The eigenvalues are sorted by their absolute value, ascending.
|
||
* An eigenvalue with multiplicity k will be listed k times. The eigenvectors are returned as columns of a matrix –
|
||
* the eigenvector that belongs to the j-th eigenvalue in the list (eg. `values[j]`) is the j-th column (eg. `column(vectors, j)`).
|
||
* If the algorithm fails to converge, it will throw an error – in that case, however, you may still find useful information
|
||
* in `err.values` and `err.vectors`.
|
||
*
|
||
* Syntax:
|
||
*
|
||
* math.eigs(x, [prec])
|
||
*
|
||
* Examples:
|
||
*
|
||
* const { eigs, multiply, column, transpose } = math
|
||
* const H = [[5, 2.3], [2.3, 1]]
|
||
* const ans = eigs(H) // returns {values: [E1,E2...sorted], vectors: [v1,v2.... corresponding vectors as columns]}
|
||
* const E = ans.values
|
||
* const U = ans.vectors
|
||
* multiply(H, column(U, 0)) // returns multiply(E[0], column(U, 0))
|
||
* const UTxHxU = multiply(transpose(U), H, U) // diagonalizes H
|
||
* E[0] == UTxHxU[0][0] // returns true
|
||
*
|
||
* See also:
|
||
*
|
||
* inv
|
||
*
|
||
* @param {Array | Matrix} x Matrix to be diagonalized
|
||
*
|
||
* @param {number | BigNumber} [prec] Precision, default value: 1e-15
|
||
* @return {{values: Array|Matrix, vectors: Array|Matrix}} Object containing an array of eigenvalues and a matrix with eigenvectors as columns.
|
||
*
|
||
*/
|
||
|
||
return typed('eigs', {
|
||
Array: function Array(x) {
|
||
var mat = matrix(x);
|
||
return computeValuesAndVectors(mat);
|
||
},
|
||
'Array, number|BigNumber': function ArrayNumberBigNumber(x, prec) {
|
||
var mat = matrix(x);
|
||
return computeValuesAndVectors(mat, prec);
|
||
},
|
||
Matrix: function Matrix(mat) {
|
||
var {
|
||
values,
|
||
vectors
|
||
} = computeValuesAndVectors(mat);
|
||
return {
|
||
values: matrix(values),
|
||
vectors: matrix(vectors)
|
||
};
|
||
},
|
||
'Matrix, number|BigNumber': function MatrixNumberBigNumber(mat, prec) {
|
||
var {
|
||
values,
|
||
vectors
|
||
} = computeValuesAndVectors(mat, prec);
|
||
return {
|
||
values: matrix(values),
|
||
vectors: matrix(vectors)
|
||
};
|
||
}
|
||
});
|
||
|
||
function computeValuesAndVectors(mat, prec) {
|
||
if (prec === undefined) {
|
||
prec = config.epsilon;
|
||
}
|
||
|
||
var size = mat.size();
|
||
|
||
if (size.length !== 2 || size[0] !== size[1]) {
|
||
throw new RangeError('Matrix must be square (size: ' + format(size) + ')');
|
||
}
|
||
|
||
var arr = mat.toArray();
|
||
var N = size[0];
|
||
|
||
if (isReal(arr, N, prec)) {
|
||
coerceReal(arr, N);
|
||
|
||
if (isSymmetric(arr, N, prec)) {
|
||
var _type = coerceTypes(mat, arr, N);
|
||
|
||
return doRealSymetric(arr, N, prec, _type);
|
||
}
|
||
}
|
||
|
||
var type = coerceTypes(mat, arr, N);
|
||
return doComplexEigs(arr, N, prec, type);
|
||
}
|
||
/** @return {boolean} */
|
||
|
||
|
||
function isSymmetric(arr, N, prec) {
|
||
for (var i = 0; i < N; i++) {
|
||
for (var j = i; j < N; j++) {
|
||
// TODO proper comparison of bignum and frac
|
||
if (larger(bignumber(abs(subtract(arr[i][j], arr[j][i]))), prec)) {
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
/** @return {boolean} */
|
||
|
||
|
||
function isReal(arr, N, prec) {
|
||
for (var i = 0; i < N; i++) {
|
||
for (var j = 0; j < N; j++) {
|
||
// TODO proper comparison of bignum and frac
|
||
if (larger(bignumber(abs(im(arr[i][j]))), prec)) {
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
function coerceReal(arr, N) {
|
||
for (var i = 0; i < N; i++) {
|
||
for (var j = 0; j < N; j++) {
|
||
arr[i][j] = re(arr[i][j]);
|
||
}
|
||
}
|
||
}
|
||
/** @return {'number' | 'BigNumber' | 'Complex'} */
|
||
|
||
|
||
function coerceTypes(mat, arr, N) {
|
||
/** @type {string} */
|
||
var type = mat.datatype();
|
||
|
||
if (type === 'number' || type === 'BigNumber' || type === 'Complex') {
|
||
return type;
|
||
}
|
||
|
||
var hasNumber = false;
|
||
var hasBig = false;
|
||
var hasComplex = false;
|
||
|
||
for (var i = 0; i < N; i++) {
|
||
for (var j = 0; j < N; j++) {
|
||
var el = arr[i][j];
|
||
|
||
if (isNumber(el) || isFraction(el)) {
|
||
hasNumber = true;
|
||
} else if (isBigNumber(el)) {
|
||
hasBig = true;
|
||
} else if (isComplex(el)) {
|
||
hasComplex = true;
|
||
} else {
|
||
throw TypeError('Unsupported type in Matrix: ' + typeOf(el));
|
||
}
|
||
}
|
||
}
|
||
|
||
if (hasBig && hasComplex) {
|
||
console.warn('Complex BigNumbers not supported, this operation will lose precission.');
|
||
}
|
||
|
||
if (hasComplex) {
|
||
for (var _i = 0; _i < N; _i++) {
|
||
for (var _j = 0; _j < N; _j++) {
|
||
arr[_i][_j] = complex(arr[_i][_j]);
|
||
}
|
||
}
|
||
|
||
return 'Complex';
|
||
}
|
||
|
||
if (hasBig) {
|
||
for (var _i2 = 0; _i2 < N; _i2++) {
|
||
for (var _j2 = 0; _j2 < N; _j2++) {
|
||
arr[_i2][_j2] = bignumber(arr[_i2][_j2]);
|
||
}
|
||
}
|
||
|
||
return 'BigNumber';
|
||
}
|
||
|
||
if (hasNumber) {
|
||
for (var _i3 = 0; _i3 < N; _i3++) {
|
||
for (var _j3 = 0; _j3 < N; _j3++) {
|
||
arr[_i3][_j3] = number(arr[_i3][_j3]);
|
||
}
|
||
}
|
||
|
||
return 'number';
|
||
} else {
|
||
throw TypeError('Matrix contains unsupported types only.');
|
||
}
|
||
}
|
||
}); |