50 lines
1.3 KiB
JavaScript
50 lines
1.3 KiB
JavaScript
import { factory } from '../../utils/factory.js';
|
|
var name = 'bellNumbers';
|
|
var dependencies = ['typed', 'addScalar', 'isNegative', 'isInteger', 'stirlingS2'];
|
|
export var createBellNumbers = /* #__PURE__ */factory(name, dependencies, _ref => {
|
|
var {
|
|
typed,
|
|
addScalar,
|
|
isNegative,
|
|
isInteger,
|
|
stirlingS2
|
|
} = _ref;
|
|
|
|
/**
|
|
* The Bell Numbers count the number of partitions of a set. A partition is a pairwise disjoint subset of S whose union is S.
|
|
* bellNumbers only takes integer arguments.
|
|
* The following condition must be enforced: n >= 0
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.bellNumbers(n)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.bellNumbers(3) // returns 5
|
|
* math.bellNumbers(8) // returns 4140
|
|
*
|
|
* See also:
|
|
*
|
|
* stirlingS2
|
|
*
|
|
* @param {Number | BigNumber} n Total number of objects in the set
|
|
* @return {Number | BigNumber} B(n)
|
|
*/
|
|
return typed(name, {
|
|
'number | BigNumber': function numberBigNumber(n) {
|
|
if (!isInteger(n) || isNegative(n)) {
|
|
throw new TypeError('Non-negative integer value expected in function bellNumbers');
|
|
} // Sum (k=0, n) S(n,k).
|
|
|
|
|
|
var result = 0;
|
|
|
|
for (var i = 0; i <= n; i++) {
|
|
result = addScalar(result, stirlingS2(n, i));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
});
|
|
}); |