simple-squiggle/node_modules/mathjs/lib/esm/function/arithmetic/norm.js

317 lines
7.3 KiB
JavaScript

import { factory } from '../../utils/factory.js';
var name = 'norm';
var dependencies = ['typed', 'abs', 'add', 'pow', 'conj', 'sqrt', 'multiply', 'equalScalar', 'larger', 'smaller', 'matrix', 'ctranspose', 'eigs'];
export var createNorm = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
abs,
add,
pow,
conj,
sqrt,
multiply,
equalScalar,
larger,
smaller,
matrix,
ctranspose,
eigs
} = _ref;
/**
* Calculate the norm of a number, vector or matrix.
*
* The second parameter p is optional. If not provided, it defaults to 2.
*
* Syntax:
*
* math.norm(x)
* math.norm(x, p)
*
* Examples:
*
* math.abs(-3.5) // returns 3.5
* math.norm(-3.5) // returns 3.5
*
* math.norm(math.complex(3, -4)) // returns 5
*
* math.norm([1, 2, -3], Infinity) // returns 3
* math.norm([1, 2, -3], -Infinity) // returns 1
*
* math.norm([3, 4], 2) // returns 5
*
* math.norm([[1, 2], [3, 4]], 1) // returns 6
* math.norm([[1, 2], [3, 4]], 'inf') // returns 7
* math.norm([[1, 2], [3, 4]], 'fro') // returns 5.477225575051661
*
* See also:
*
* abs, hypot
*
* @param {number | BigNumber | Complex | Array | Matrix} x
* Value for which to calculate the norm
* @param {number | BigNumber | string} [p=2]
* Vector space.
* Supported numbers include Infinity and -Infinity.
* Supported strings are: 'inf', '-inf', and 'fro' (The Frobenius norm)
* @return {number | BigNumber} the p-norm
*/
return typed(name, {
number: Math.abs,
Complex: function Complex(x) {
return x.abs();
},
BigNumber: function BigNumber(x) {
// norm(x) = abs(x)
return x.abs();
},
boolean: function boolean(x) {
// norm(x) = abs(x)
return Math.abs(x);
},
Array: function Array(x) {
return _norm(matrix(x), 2);
},
Matrix: function Matrix(x) {
return _norm(x, 2);
},
'number | Complex | BigNumber | boolean, number | BigNumber | string': function numberComplexBigNumberBooleanNumberBigNumberString(x) {
// ignore second parameter, TODO: remove the option of second parameter for these types
return this(x);
},
'Array, number | BigNumber | string': function ArrayNumberBigNumberString(x, p) {
return _norm(matrix(x), p);
},
'Matrix, number | BigNumber | string': function MatrixNumberBigNumberString(x, p) {
return _norm(x, p);
}
});
/**
* Calculate the plus infinity norm for a vector
* @param {Matrix} x
* @returns {number} Returns the norm
* @private
*/
function _vectorNormPlusInfinity(x) {
// norm(x, Infinity) = max(abs(x))
var pinf = 0; // skip zeros since abs(0) === 0
x.forEach(function (value) {
var v = abs(value);
if (larger(v, pinf)) {
pinf = v;
}
}, true);
return pinf;
}
/**
* Calculate the minus infinity norm for a vector
* @param {Matrix} x
* @returns {number} Returns the norm
* @private
*/
function _vectorNormMinusInfinity(x) {
// norm(x, -Infinity) = min(abs(x))
var ninf; // skip zeros since abs(0) === 0
x.forEach(function (value) {
var v = abs(value);
if (!ninf || smaller(v, ninf)) {
ninf = v;
}
}, true);
return ninf || 0;
}
/**
* Calculate the norm for a vector
* @param {Matrix} x
* @param {number | string} p
* @returns {number} Returns the norm
* @private
*/
function _vectorNorm(x, p) {
// check p
if (p === Number.POSITIVE_INFINITY || p === 'inf') {
return _vectorNormPlusInfinity(x);
}
if (p === Number.NEGATIVE_INFINITY || p === '-inf') {
return _vectorNormMinusInfinity(x);
}
if (p === 'fro') {
return _norm(x, 2);
}
if (typeof p === 'number' && !isNaN(p)) {
// check p != 0
if (!equalScalar(p, 0)) {
// norm(x, p) = sum(abs(xi) ^ p) ^ 1/p
var n = 0; // skip zeros since abs(0) === 0
x.forEach(function (value) {
n = add(pow(abs(value), p), n);
}, true);
return pow(n, 1 / p);
}
return Number.POSITIVE_INFINITY;
} // invalid parameter value
throw new Error('Unsupported parameter value');
}
/**
* Calculate the Frobenius norm for a matrix
* @param {Matrix} x
* @returns {number} Returns the norm
* @private
*/
function _matrixNormFrobenius(x) {
// norm(x) = sqrt(sum(diag(x'x)))
var fro = 0;
x.forEach(function (value, index) {
fro = add(fro, multiply(value, conj(value)));
});
return abs(sqrt(fro));
}
/**
* Calculate the norm L1 for a matrix
* @param {Matrix} x
* @returns {number} Returns the norm
* @private
*/
function _matrixNormOne(x) {
// norm(x) = the largest column sum
var c = []; // result
var maxc = 0; // skip zeros since abs(0) == 0
x.forEach(function (value, index) {
var j = index[1];
var cj = add(c[j] || 0, abs(value));
if (larger(cj, maxc)) {
maxc = cj;
}
c[j] = cj;
}, true);
return maxc;
}
/**
* Calculate the norm L2 for a matrix
* @param {Matrix} x
* @returns {number} Returns the norm
* @private
*/
function _matrixNormTwo(x) {
// norm(x) = sqrt( max eigenvalue of A*.A)
var sizeX = x.size();
if (sizeX[0] !== sizeX[1]) {
throw new RangeError('Invalid matrix dimensions');
}
var tx = ctranspose(x);
var squaredX = multiply(tx, x);
var eigenVals = eigs(squaredX).values.toArray();
var rho = eigenVals[eigenVals.length - 1];
return abs(sqrt(rho));
}
/**
* Calculate the infinity norm for a matrix
* @param {Matrix} x
* @returns {number} Returns the norm
* @private
*/
function _matrixNormInfinity(x) {
// norm(x) = the largest row sum
var r = []; // result
var maxr = 0; // skip zeros since abs(0) == 0
x.forEach(function (value, index) {
var i = index[0];
var ri = add(r[i] || 0, abs(value));
if (larger(ri, maxr)) {
maxr = ri;
}
r[i] = ri;
}, true);
return maxr;
}
/**
* Calculate the norm for a 2D Matrix (M*N)
* @param {Matrix} x
* @param {number | string} p
* @returns {number} Returns the norm
* @private
*/
function _matrixNorm(x, p) {
// check p
if (p === 1) {
return _matrixNormOne(x);
}
if (p === Number.POSITIVE_INFINITY || p === 'inf') {
return _matrixNormInfinity(x);
}
if (p === 'fro') {
return _matrixNormFrobenius(x);
}
if (p === 2) {
return _matrixNormTwo(x);
} // invalid parameter value
throw new Error('Unsupported parameter value ' + p);
}
/**
* Calculate the norm for an array
* @param {Matrix} x
* @param {number | string} p
* @returns {number} Returns the norm
* @private
*/
function _norm(x, p) {
// size
var sizeX = x.size(); // check if it is a vector
if (sizeX.length === 1) {
return _vectorNorm(x, p);
} // MxN matrix
if (sizeX.length === 2) {
if (sizeX[0] && sizeX[1]) {
return _matrixNorm(x, p);
} else {
throw new RangeError('Invalid matrix dimensions');
}
}
}
});