52 lines
1.6 KiB
JavaScript
52 lines
1.6 KiB
JavaScript
import { csMarked } from './csMarked.js';
|
|
import { csMark } from './csMark.js';
|
|
import { csDfs } from './csDfs.js';
|
|
/**
|
|
* The csReach function computes X = Reach(B), where B is the nonzero pattern of the n-by-1
|
|
* sparse column of vector b. The function returns the set of nodes reachable from any node in B. The
|
|
* nonzero pattern xi of the solution x to the sparse linear system Lx=b is given by X=Reach(B).
|
|
*
|
|
* @param {Matrix} g The G matrix
|
|
* @param {Matrix} b The B matrix
|
|
* @param {Number} k The kth column in B
|
|
* @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
|
|
* The first n entries is the nonzero pattern, the last n entries is the stack
|
|
* @param {Array} pinv The inverse row permutation vector
|
|
*
|
|
* @return {Number} The index for the nonzero pattern
|
|
*
|
|
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
|
*/
|
|
|
|
export function csReach(g, b, k, xi, pinv) {
|
|
// g arrays
|
|
var gptr = g._ptr;
|
|
var gsize = g._size; // b arrays
|
|
|
|
var bindex = b._index;
|
|
var bptr = b._ptr; // columns
|
|
|
|
var n = gsize[1]; // vars
|
|
|
|
var p, p0, p1; // initialize top
|
|
|
|
var top = n; // loop column indeces in B
|
|
|
|
for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) {
|
|
// node i
|
|
var i = bindex[p]; // check node i is marked
|
|
|
|
if (!csMarked(gptr, i)) {
|
|
// start a dfs at unmarked node i
|
|
top = csDfs(i, g, top, xi, pinv);
|
|
}
|
|
} // loop columns from top -> n - 1
|
|
|
|
|
|
for (p = top; p < n; p++) {
|
|
// restore G
|
|
csMark(gptr, xi[p]);
|
|
}
|
|
|
|
return top;
|
|
} |