66 lines
1.7 KiB
JavaScript
66 lines
1.7 KiB
JavaScript
import { csMark } from './csMark.js';
|
|
import { csMarked } from './csMarked.js';
|
|
/**
|
|
* Find nonzero pattern of Cholesky L(k,1:k-1) using etree and triu(A(:,k))
|
|
*
|
|
* @param {Matrix} a The A matrix
|
|
* @param {Number} k The kth column in A
|
|
* @param {Array} parent The parent vector from the symbolic analysis result
|
|
* @param {Array} w The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
|
|
* The first n entries is the nonzero pattern, the last n entries is the stack
|
|
*
|
|
* @return {Number} The index for the nonzero pattern
|
|
*
|
|
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
|
*/
|
|
|
|
export function csEreach(a, k, parent, w) {
|
|
// a arrays
|
|
var aindex = a._index;
|
|
var aptr = a._ptr;
|
|
var asize = a._size; // columns
|
|
|
|
var n = asize[1]; // initialize top
|
|
|
|
var top = n; // vars
|
|
|
|
var p, p0, p1, len; // mark node k as visited
|
|
|
|
csMark(w, k); // loop values & index for column k
|
|
|
|
for (p0 = aptr[k], p1 = aptr[k + 1], p = p0; p < p1; p++) {
|
|
// A(i,k) is nonzero
|
|
var i = aindex[p]; // only use upper triangular part of A
|
|
|
|
if (i > k) {
|
|
continue;
|
|
} // traverse up etree
|
|
|
|
|
|
for (len = 0; !csMarked(w, i); i = parent[i]) {
|
|
// L(k,i) is nonzero, last n entries in w
|
|
w[n + len++] = i; // mark i as visited
|
|
|
|
csMark(w, i);
|
|
}
|
|
|
|
while (len > 0) {
|
|
// decrement top & len
|
|
--top;
|
|
--len; // push path onto stack, last n entries in w
|
|
|
|
w[n + top] = w[n + len];
|
|
}
|
|
} // unmark all nodes
|
|
|
|
|
|
for (p = top; p < n; p++) {
|
|
// use stack value, last n entries in w
|
|
csMark(w, w[n + p]);
|
|
} // unmark node k
|
|
|
|
|
|
csMark(w, k); // s[top..n-1] contains pattern of L(k,:)
|
|
|
|
return top;
|
|
} |