simple-squiggle/node_modules/mathjs/lib/esm/function/algebra/sparse/csEreach.js

66 lines
1.7 KiB
JavaScript

import { csMark } from './csMark.js';
import { csMarked } from './csMarked.js';
/**
* Find nonzero pattern of Cholesky L(k,1:k-1) using etree and triu(A(:,k))
*
* @param {Matrix} a The A matrix
* @param {Number} k The kth column in A
* @param {Array} parent The parent vector from the symbolic analysis result
* @param {Array} w The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
* The first n entries is the nonzero pattern, the last n entries is the stack
*
* @return {Number} The index for the nonzero pattern
*
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
*/
export function csEreach(a, k, parent, w) {
// a arrays
var aindex = a._index;
var aptr = a._ptr;
var asize = a._size; // columns
var n = asize[1]; // initialize top
var top = n; // vars
var p, p0, p1, len; // mark node k as visited
csMark(w, k); // loop values & index for column k
for (p0 = aptr[k], p1 = aptr[k + 1], p = p0; p < p1; p++) {
// A(i,k) is nonzero
var i = aindex[p]; // only use upper triangular part of A
if (i > k) {
continue;
} // traverse up etree
for (len = 0; !csMarked(w, i); i = parent[i]) {
// L(k,i) is nonzero, last n entries in w
w[n + len++] = i; // mark i as visited
csMark(w, i);
}
while (len > 0) {
// decrement top & len
--top;
--len; // push path onto stack, last n entries in w
w[n + top] = w[n + len];
}
} // unmark all nodes
for (p = top; p < n; p++) {
// use stack value, last n entries in w
csMark(w, w[n + p]);
} // unmark node k
csMark(w, k); // s[top..n-1] contains pattern of L(k,:)
return top;
}