simple-squiggle/node_modules/mathjs/lib/esm/function/algebra/sparse/csChol.js

168 lines
3.7 KiB
JavaScript

import { factory } from '../../../utils/factory.js';
import { csEreach } from './csEreach.js';
import { createCsSymperm } from './csSymperm.js';
var name = 'csChol';
var dependencies = ['divideScalar', 'sqrt', 'subtract', 'multiply', 'im', 're', 'conj', 'equal', 'smallerEq', 'SparseMatrix'];
export var createCsChol = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
divideScalar,
sqrt,
subtract,
multiply,
im,
re,
conj,
equal,
smallerEq,
SparseMatrix
} = _ref;
var csSymperm = createCsSymperm({
conj,
SparseMatrix
});
/**
* Computes the Cholesky factorization of matrix A. It computes L and P so
* L * L' = P * A * P'
*
* @param {Matrix} m The A Matrix to factorize, only upper triangular part used
* @param {Object} s The symbolic analysis from cs_schol()
*
* @return {Number} The numeric Cholesky factorization of A or null
*
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
*/
return function csChol(m, s) {
// validate input
if (!m) {
return null;
} // m arrays
var size = m._size; // columns
var n = size[1]; // symbolic analysis result
var parent = s.parent;
var cp = s.cp;
var pinv = s.pinv; // L arrays
var lvalues = [];
var lindex = [];
var lptr = []; // L
var L = new SparseMatrix({
values: lvalues,
index: lindex,
ptr: lptr,
size: [n, n]
}); // vars
var c = []; // (2 * n)
var x = []; // (n)
// compute C = P * A * P'
var cm = pinv ? csSymperm(m, pinv, 1) : m; // C matrix arrays
var cvalues = cm._values;
var cindex = cm._index;
var cptr = cm._ptr; // vars
var k, p; // initialize variables
for (k = 0; k < n; k++) {
lptr[k] = c[k] = cp[k];
} // compute L(k,:) for L*L' = C
for (k = 0; k < n; k++) {
// nonzero pattern of L(k,:)
var top = csEreach(cm, k, parent, c); // x (0:k) is now zero
x[k] = 0; // x = full(triu(C(:,k)))
for (p = cptr[k]; p < cptr[k + 1]; p++) {
if (cindex[p] <= k) {
x[cindex[p]] = cvalues[p];
}
} // d = C(k,k)
var d = x[k]; // clear x for k+1st iteration
x[k] = 0; // solve L(0:k-1,0:k-1) * x = C(:,k)
for (; top < n; top++) {
// s[top..n-1] is pattern of L(k,:)
var i = s[top]; // L(k,i) = x (i) / L(i,i)
var lki = divideScalar(x[i], lvalues[lptr[i]]); // clear x for k+1st iteration
x[i] = 0;
for (p = lptr[i] + 1; p < c[i]; p++) {
// row
var r = lindex[p]; // update x[r]
x[r] = subtract(x[r], multiply(lvalues[p], lki));
} // d = d - L(k,i)*L(k,i)
d = subtract(d, multiply(lki, conj(lki)));
p = c[i]++; // store L(k,i) in column i
lindex[p] = k;
lvalues[p] = conj(lki);
} // compute L(k,k)
if (smallerEq(re(d), 0) || !equal(im(d), 0)) {
// not pos def
return null;
}
p = c[k]++; // store L(k,k) = sqrt(d) in column k
lindex[p] = k;
lvalues[p] = sqrt(d);
} // finalize L
lptr[n] = cp[n]; // P matrix
var P; // check we need to calculate P
if (pinv) {
// P arrays
var pvalues = [];
var pindex = [];
var pptr = []; // create P matrix
for (p = 0; p < n; p++) {
// initialize ptr (one value per column)
pptr[p] = p; // index (apply permutation vector)
pindex.push(pinv[p]); // value 1
pvalues.push(1);
} // update ptr
pptr[n] = n; // P
P = new SparseMatrix({
values: pvalues,
index: pindex,
ptr: pptr,
size: [n, n]
});
} // return L & P
return {
L: L,
P: P
};
};
});