161 lines
4.3 KiB
JavaScript
161 lines
4.3 KiB
JavaScript
import { factory } from '../../../utils/factory.js';
|
|
import { createSolveValidation } from './utils/solveValidation.js';
|
|
var name = 'lsolve';
|
|
var dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtract', 'equalScalar', 'DenseMatrix'];
|
|
export var createLsolve = /* #__PURE__ */factory(name, dependencies, _ref => {
|
|
var {
|
|
typed,
|
|
matrix,
|
|
divideScalar,
|
|
multiplyScalar,
|
|
subtract,
|
|
equalScalar,
|
|
DenseMatrix
|
|
} = _ref;
|
|
var solveValidation = createSolveValidation({
|
|
DenseMatrix
|
|
});
|
|
/**
|
|
* Finds one solution of a linear equation system by forwards substitution. Matrix must be a lower triangular matrix. Throws an error if there's no solution.
|
|
*
|
|
* `L * x = b`
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.lsolve(L, b)
|
|
*
|
|
* Examples:
|
|
*
|
|
* const a = [[-2, 3], [2, 1]]
|
|
* const b = [11, 9]
|
|
* const x = lsolve(a, b) // [[-5.5], [20]]
|
|
*
|
|
* See also:
|
|
*
|
|
* lsolveAll, lup, slu, usolve, lusolve
|
|
*
|
|
* @param {Matrix, Array} L A N x N matrix or array (L)
|
|
* @param {Matrix, Array} b A column vector with the b values
|
|
*
|
|
* @return {DenseMatrix | Array} A column vector with the linear system solution (x)
|
|
*/
|
|
|
|
return typed(name, {
|
|
'SparseMatrix, Array | Matrix': function SparseMatrixArrayMatrix(m, b) {
|
|
return _sparseForwardSubstitution(m, b);
|
|
},
|
|
'DenseMatrix, Array | Matrix': function DenseMatrixArrayMatrix(m, b) {
|
|
return _denseForwardSubstitution(m, b);
|
|
},
|
|
'Array, Array | Matrix': function ArrayArrayMatrix(a, b) {
|
|
var m = matrix(a);
|
|
|
|
var r = _denseForwardSubstitution(m, b);
|
|
|
|
return r.valueOf();
|
|
}
|
|
});
|
|
|
|
function _denseForwardSubstitution(m, b) {
|
|
// validate matrix and vector, return copy of column vector b
|
|
b = solveValidation(m, b, true);
|
|
var bdata = b._data;
|
|
var rows = m._size[0];
|
|
var columns = m._size[1]; // result
|
|
|
|
var x = [];
|
|
var mdata = m._data; // loop columns
|
|
|
|
for (var j = 0; j < columns; j++) {
|
|
var bj = bdata[j][0] || 0;
|
|
var xj = void 0;
|
|
|
|
if (!equalScalar(bj, 0)) {
|
|
// non-degenerate row, find solution
|
|
var vjj = mdata[j][j];
|
|
|
|
if (equalScalar(vjj, 0)) {
|
|
throw new Error('Linear system cannot be solved since matrix is singular');
|
|
}
|
|
|
|
xj = divideScalar(bj, vjj); // loop rows
|
|
|
|
for (var i = j + 1; i < rows; i++) {
|
|
bdata[i] = [subtract(bdata[i][0] || 0, multiplyScalar(xj, mdata[i][j]))];
|
|
}
|
|
} else {
|
|
// degenerate row, we can choose any value
|
|
xj = 0;
|
|
}
|
|
|
|
x[j] = [xj];
|
|
}
|
|
|
|
return new DenseMatrix({
|
|
data: x,
|
|
size: [rows, 1]
|
|
});
|
|
}
|
|
|
|
function _sparseForwardSubstitution(m, b) {
|
|
// validate matrix and vector, return copy of column vector b
|
|
b = solveValidation(m, b, true);
|
|
var bdata = b._data;
|
|
var rows = m._size[0];
|
|
var columns = m._size[1];
|
|
var values = m._values;
|
|
var index = m._index;
|
|
var ptr = m._ptr; // result
|
|
|
|
var x = []; // loop columns
|
|
|
|
for (var j = 0; j < columns; j++) {
|
|
var bj = bdata[j][0] || 0;
|
|
|
|
if (!equalScalar(bj, 0)) {
|
|
// non-degenerate row, find solution
|
|
var vjj = 0; // matrix values & indices (column j)
|
|
|
|
var jValues = [];
|
|
var jIndices = []; // first and last index in the column
|
|
|
|
var firstIndex = ptr[j];
|
|
var lastIndex = ptr[j + 1]; // values in column, find value at [j, j]
|
|
|
|
for (var k = firstIndex; k < lastIndex; k++) {
|
|
var i = index[k]; // check row (rows are not sorted!)
|
|
|
|
if (i === j) {
|
|
vjj = values[k];
|
|
} else if (i > j) {
|
|
// store lower triangular
|
|
jValues.push(values[k]);
|
|
jIndices.push(i);
|
|
}
|
|
} // at this point we must have a value in vjj
|
|
|
|
|
|
if (equalScalar(vjj, 0)) {
|
|
throw new Error('Linear system cannot be solved since matrix is singular');
|
|
}
|
|
|
|
var xj = divideScalar(bj, vjj);
|
|
|
|
for (var _k = 0, l = jIndices.length; _k < l; _k++) {
|
|
var _i = jIndices[_k];
|
|
bdata[_i] = [subtract(bdata[_i][0] || 0, multiplyScalar(xj, jValues[_k]))];
|
|
}
|
|
|
|
x[j] = [xj];
|
|
} else {
|
|
// degenerate row, we can choose any value
|
|
x[j] = [0];
|
|
}
|
|
}
|
|
|
|
return new DenseMatrix({
|
|
data: x,
|
|
size: [rows, 1]
|
|
});
|
|
}
|
|
}); |