simple-squiggle/node_modules/mathjs/lib/esm/function/algebra/simplify/simplifyConstant.js

484 lines
14 KiB
JavaScript

// TODO this could be improved by simplifying seperated constants under associative and commutative operators
import { isFraction, isMatrix, isNode, isArrayNode, isConstantNode, isIndexNode, isObjectNode, isOperatorNode } from '../../../utils/is.js';
import { factory } from '../../../utils/factory.js';
import { createUtil } from './util.js';
import { noBignumber, noFraction } from '../../../utils/noop.js';
var name = 'simplifyConstant';
var dependencies = ['typed', 'config', 'mathWithTransform', 'matrix', '?fraction', '?bignumber', 'AccessorNode', 'ArrayNode', 'ConstantNode', 'FunctionNode', 'IndexNode', 'ObjectNode', 'OperatorNode', 'SymbolNode'];
export var createSimplifyConstant = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
config,
mathWithTransform,
matrix,
fraction,
bignumber,
AccessorNode,
ArrayNode,
ConstantNode,
FunctionNode,
IndexNode,
ObjectNode,
OperatorNode,
SymbolNode
} = _ref;
var {
isCommutative,
isAssociative,
allChildren,
createMakeNodeFunction
} = createUtil({
FunctionNode,
OperatorNode,
SymbolNode
});
function simplifyConstant(expr, options) {
return _ensureNode(foldFraction(expr, options));
}
function _removeFractions(thing) {
if (isFraction(thing)) {
return thing.valueOf();
}
if (thing instanceof Array) {
return thing.map(_removeFractions);
}
if (isMatrix(thing)) {
return matrix(_removeFractions(thing.valueOf()));
}
return thing;
}
function _eval(fnname, args, options) {
try {
return mathWithTransform[fnname].apply(null, args);
} catch (ignore) {
// sometimes the implicit type conversion causes the evaluation to fail, so we'll try again after removing Fractions
args = args.map(_removeFractions);
return _toNumber(mathWithTransform[fnname].apply(null, args), options);
}
}
var _toNode = typed({
Fraction: _fractionToNode,
number: function number(n) {
if (n < 0) {
return unaryMinusNode(new ConstantNode(-n));
}
return new ConstantNode(n);
},
BigNumber: function BigNumber(n) {
if (n < 0) {
return unaryMinusNode(new ConstantNode(-n));
}
return new ConstantNode(n); // old parameters: (n.toString(), 'number')
},
Complex: function Complex(s) {
throw new Error('Cannot convert Complex number to Node');
},
string: function string(s) {
return new ConstantNode(s);
},
Matrix: function Matrix(m) {
return new ArrayNode(m.valueOf().map(e => _toNode(e)));
}
});
function _ensureNode(thing) {
if (isNode(thing)) {
return thing;
}
return _toNode(thing);
} // convert a number to a fraction only if it can be expressed exactly,
// and when both numerator and denominator are small enough
function _exactFraction(n, options) {
var exactFractions = options && options.exactFractions !== false;
if (exactFractions && isFinite(n) && fraction) {
var f = fraction(n);
var fractionsLimit = options && typeof options.fractionsLimit === 'number' ? options.fractionsLimit : Infinity; // no limit by default
if (f.valueOf() === n && f.n < fractionsLimit && f.d < fractionsLimit) {
return f;
}
}
return n;
} // Convert numbers to a preferred number type in preference order: Fraction, number, Complex
// BigNumbers are left alone
var _toNumber = typed({
'string, Object': function stringObject(s, options) {
if (config.number === 'BigNumber') {
if (bignumber === undefined) {
noBignumber();
}
return bignumber(s);
} else if (config.number === 'Fraction') {
if (fraction === undefined) {
noFraction();
}
return fraction(s);
} else {
var n = parseFloat(s);
return _exactFraction(n, options);
}
},
'Fraction, Object': function FractionObject(s, options) {
return s;
},
// we don't need options here
'BigNumber, Object': function BigNumberObject(s, options) {
return s;
},
// we don't need options here
'number, Object': function numberObject(s, options) {
return _exactFraction(s, options);
},
'Complex, Object': function ComplexObject(s, options) {
if (s.im !== 0) {
return s;
}
return _exactFraction(s.re, options);
},
'Matrix, Object': function MatrixObject(s, options) {
return matrix(_exactFraction(s.valueOf()));
},
'Array, Object': function ArrayObject(s, options) {
return s.map(_exactFraction);
}
});
function unaryMinusNode(n) {
return new OperatorNode('-', 'unaryMinus', [n]);
}
function _fractionToNode(f) {
var n;
var vn = f.s * f.n;
if (vn < 0) {
n = new OperatorNode('-', 'unaryMinus', [new ConstantNode(-vn)]);
} else {
n = new ConstantNode(vn);
}
if (f.d === 1) {
return n;
}
return new OperatorNode('/', 'divide', [n, new ConstantNode(f.d)]);
}
/* Handles constant indexing of ArrayNodes, matrices, and ObjectNodes */
function _foldAccessor(obj, index, options) {
if (!isIndexNode(index)) {
// don't know what to do with that...
return new AccessorNode(_ensureNode(obj), _ensureNode(index));
}
if (isArrayNode(obj) || isMatrix(obj)) {
var remainingDims = Array.from(index.dimensions);
/* We will resolve constant indices one at a time, looking
* just in the first or second dimensions because (a) arrays
* of more than two dimensions are likely rare, and (b) pulling
* out the third or higher dimension would be pretty intricate.
* The price is that we miss simplifying [..3d array][x,y,1]
*/
while (remainingDims.length > 0) {
if (isConstantNode(remainingDims[0]) && typeof remainingDims[0].value !== 'string') {
var first = _toNumber(remainingDims.shift().value, options);
if (isArrayNode(obj)) {
obj = obj.items[first - 1];
} else {
// matrix
obj = obj.valueOf()[first - 1];
if (obj instanceof Array) {
obj = matrix(obj);
}
}
} else if (remainingDims.length > 1 && isConstantNode(remainingDims[1]) && typeof remainingDims[1].value !== 'string') {
var second = _toNumber(remainingDims[1].value, options);
var tryItems = [];
var fromItems = isArrayNode(obj) ? obj.items : obj.valueOf();
for (var item of fromItems) {
if (isArrayNode(item)) {
tryItems.push(item.items[second - 1]);
} else if (isMatrix(obj)) {
tryItems.push(item[second - 1]);
} else {
break;
}
}
if (tryItems.length === fromItems.length) {
if (isArrayNode(obj)) {
obj = new ArrayNode(tryItems);
} else {
// matrix
obj = matrix(tryItems);
}
remainingDims.splice(1, 1);
} else {
// extracting slice along 2nd dimension failed, give up
break;
}
} else {
// neither 1st or 2nd dimension is constant, give up
break;
}
}
if (remainingDims.length === index.dimensions.length) {
/* No successful constant indexing */
return new AccessorNode(_ensureNode(obj), index);
}
if (remainingDims.length > 0) {
/* Indexed some but not all dimensions */
index = new IndexNode(remainingDims);
return new AccessorNode(_ensureNode(obj), index);
}
/* All dimensions were constant, access completely resolved */
return obj;
}
if (isObjectNode(obj) && index.dimensions.length === 1 && isConstantNode(index.dimensions[0])) {
var key = index.dimensions[0].value;
if (key in obj.properties) {
return obj.properties[key];
}
return new ConstantNode(); // undefined
}
/* Don't know how to index this sort of obj, at least not with this index */
return new AccessorNode(_ensureNode(obj), index);
}
/*
* Create a binary tree from a list of Fractions and Nodes.
* Tries to fold Fractions by evaluating them until the first Node in the list is hit, so
* `args` should be sorted to have the Fractions at the start (if the operator is commutative).
* @param args - list of Fractions and Nodes
* @param fn - evaluator for the binary operation evaluator that accepts two Fractions
* @param makeNode - creates a binary OperatorNode/FunctionNode from a list of child Nodes
* if args.length is 1, returns args[0]
* @return - Either a Node representing a binary expression or Fraction
*/
function foldOp(fn, args, makeNode, options) {
return args.reduce(function (a, b) {
if (!isNode(a) && !isNode(b)) {
try {
return _eval(fn, [a, b], options);
} catch (ignoreandcontinue) {}
a = _toNode(a);
b = _toNode(b);
} else if (!isNode(a)) {
a = _toNode(a);
} else if (!isNode(b)) {
b = _toNode(b);
}
return makeNode([a, b]);
});
} // destroys the original node and returns a folded one
function foldFraction(node, options) {
switch (node.type) {
case 'SymbolNode':
return node;
case 'ConstantNode':
switch (typeof node.value) {
case 'number':
return _toNumber(node.value, options);
case 'string':
return node.value;
default:
if (!isNaN(node.value)) return _toNumber(node.value, options);
}
return node;
case 'FunctionNode':
if (mathWithTransform[node.name] && mathWithTransform[node.name].rawArgs) {
return node;
}
{
// Process operators as OperatorNode
var operatorFunctions = ['add', 'multiply'];
if (operatorFunctions.indexOf(node.name) === -1) {
var args = node.args.map(arg => foldFraction(arg, options)); // If all args are numbers
if (!args.some(isNode)) {
try {
return _eval(node.name, args, options);
} catch (ignoreandcontinue) {}
} // Size of a matrix does not depend on entries
if (node.name === 'size' && args.length === 1 && isArrayNode(args[0])) {
var sz = [];
var section = args[0];
while (isArrayNode(section)) {
sz.push(section.items.length);
section = section.items[0];
}
return matrix(sz);
} // Convert all args to nodes and construct a symbolic function call
return new FunctionNode(node.name, args.map(_ensureNode));
} else {// treat as operator
}
}
/* falls through */
case 'OperatorNode':
{
var fn = node.fn.toString();
var _args;
var res;
var makeNode = createMakeNodeFunction(node);
if (isOperatorNode(node) && node.isUnary()) {
_args = [foldFraction(node.args[0], options)];
if (!isNode(_args[0])) {
res = _eval(fn, _args, options);
} else {
res = makeNode(_args);
}
} else if (isAssociative(node, options.context)) {
_args = allChildren(node, options.context);
_args = _args.map(arg => foldFraction(arg, options));
if (isCommutative(fn, options.context)) {
// commutative binary operator
var consts = [];
var vars = [];
for (var i = 0; i < _args.length; i++) {
if (!isNode(_args[i])) {
consts.push(_args[i]);
} else {
vars.push(_args[i]);
}
}
if (consts.length > 1) {
res = foldOp(fn, consts, makeNode, options);
vars.unshift(res);
res = foldOp(fn, vars, makeNode, options);
} else {
// we won't change the children order since it's not neccessary
res = foldOp(fn, _args, makeNode, options);
}
} else {
// non-commutative binary operator
res = foldOp(fn, _args, makeNode, options);
}
} else {
// non-associative binary operator
_args = node.args.map(arg => foldFraction(arg, options));
res = foldOp(fn, _args, makeNode, options);
}
return res;
}
case 'ParenthesisNode':
// remove the uneccessary parenthesis
return foldFraction(node.content, options);
case 'AccessorNode':
return _foldAccessor(foldFraction(node.object, options), foldFraction(node.index, options), options);
case 'ArrayNode':
{
var foldItems = node.items.map(item => foldFraction(item, options));
if (foldItems.some(isNode)) {
return new ArrayNode(foldItems.map(_ensureNode));
}
/* All literals -- return a Matrix so we can operate on it */
return matrix(foldItems);
}
case 'IndexNode':
{
return new IndexNode(node.dimensions.map(n => simplifyConstant(n, options)));
}
case 'ObjectNode':
{
var foldProps = {};
for (var prop in node.properties) {
foldProps[prop] = simplifyConstant(node.properties[prop], options);
}
return new ObjectNode(foldProps);
}
case 'AssignmentNode':
/* falls through */
case 'BlockNode':
/* falls through */
case 'FunctionAssignmentNode':
/* falls through */
case 'RangeNode':
/* falls through */
case 'ConditionalNode':
/* falls through */
default:
throw new Error("Unimplemented node type in simplifyConstant: ".concat(node.type));
}
}
return simplifyConstant;
});