simple-squiggle/node_modules/mathjs/lib/cjs/function/combinatorics/bellNumbers.js

57 lines
1.5 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createBellNumbers = void 0;
var _factory = require("../../utils/factory.js");
var name = 'bellNumbers';
var dependencies = ['typed', 'addScalar', 'isNegative', 'isInteger', 'stirlingS2'];
var createBellNumbers = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
var typed = _ref.typed,
addScalar = _ref.addScalar,
isNegative = _ref.isNegative,
isInteger = _ref.isInteger,
stirlingS2 = _ref.stirlingS2;
/**
* The Bell Numbers count the number of partitions of a set. A partition is a pairwise disjoint subset of S whose union is S.
* bellNumbers only takes integer arguments.
* The following condition must be enforced: n >= 0
*
* Syntax:
*
* math.bellNumbers(n)
*
* Examples:
*
* math.bellNumbers(3) // returns 5
* math.bellNumbers(8) // returns 4140
*
* See also:
*
* stirlingS2
*
* @param {Number | BigNumber} n Total number of objects in the set
* @return {Number | BigNumber} B(n)
*/
return typed(name, {
'number | BigNumber': function numberBigNumber(n) {
if (!isInteger(n) || isNegative(n)) {
throw new TypeError('Non-negative integer value expected in function bellNumbers');
} // Sum (k=0, n) S(n,k).
var result = 0;
for (var i = 0; i <= n; i++) {
result = addScalar(result, stirlingS2(n, i));
}
return result;
}
});
});
exports.createBellNumbers = createBellNumbers;