324 lines
7.6 KiB
JavaScript
324 lines
7.6 KiB
JavaScript
"use strict";
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.createNorm = void 0;
|
|
|
|
var _factory = require("../../utils/factory.js");
|
|
|
|
var name = 'norm';
|
|
var dependencies = ['typed', 'abs', 'add', 'pow', 'conj', 'sqrt', 'multiply', 'equalScalar', 'larger', 'smaller', 'matrix', 'ctranspose', 'eigs'];
|
|
var createNorm = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
|
|
var typed = _ref.typed,
|
|
abs = _ref.abs,
|
|
add = _ref.add,
|
|
pow = _ref.pow,
|
|
conj = _ref.conj,
|
|
sqrt = _ref.sqrt,
|
|
multiply = _ref.multiply,
|
|
equalScalar = _ref.equalScalar,
|
|
larger = _ref.larger,
|
|
smaller = _ref.smaller,
|
|
matrix = _ref.matrix,
|
|
ctranspose = _ref.ctranspose,
|
|
eigs = _ref.eigs;
|
|
|
|
/**
|
|
* Calculate the norm of a number, vector or matrix.
|
|
*
|
|
* The second parameter p is optional. If not provided, it defaults to 2.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.norm(x)
|
|
* math.norm(x, p)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.abs(-3.5) // returns 3.5
|
|
* math.norm(-3.5) // returns 3.5
|
|
*
|
|
* math.norm(math.complex(3, -4)) // returns 5
|
|
*
|
|
* math.norm([1, 2, -3], Infinity) // returns 3
|
|
* math.norm([1, 2, -3], -Infinity) // returns 1
|
|
*
|
|
* math.norm([3, 4], 2) // returns 5
|
|
*
|
|
* math.norm([[1, 2], [3, 4]], 1) // returns 6
|
|
* math.norm([[1, 2], [3, 4]], 'inf') // returns 7
|
|
* math.norm([[1, 2], [3, 4]], 'fro') // returns 5.477225575051661
|
|
*
|
|
* See also:
|
|
*
|
|
* abs, hypot
|
|
*
|
|
* @param {number | BigNumber | Complex | Array | Matrix} x
|
|
* Value for which to calculate the norm
|
|
* @param {number | BigNumber | string} [p=2]
|
|
* Vector space.
|
|
* Supported numbers include Infinity and -Infinity.
|
|
* Supported strings are: 'inf', '-inf', and 'fro' (The Frobenius norm)
|
|
* @return {number | BigNumber} the p-norm
|
|
*/
|
|
return typed(name, {
|
|
number: Math.abs,
|
|
Complex: function Complex(x) {
|
|
return x.abs();
|
|
},
|
|
BigNumber: function BigNumber(x) {
|
|
// norm(x) = abs(x)
|
|
return x.abs();
|
|
},
|
|
boolean: function boolean(x) {
|
|
// norm(x) = abs(x)
|
|
return Math.abs(x);
|
|
},
|
|
Array: function Array(x) {
|
|
return _norm(matrix(x), 2);
|
|
},
|
|
Matrix: function Matrix(x) {
|
|
return _norm(x, 2);
|
|
},
|
|
'number | Complex | BigNumber | boolean, number | BigNumber | string': function numberComplexBigNumberBooleanNumberBigNumberString(x) {
|
|
// ignore second parameter, TODO: remove the option of second parameter for these types
|
|
return this(x);
|
|
},
|
|
'Array, number | BigNumber | string': function ArrayNumberBigNumberString(x, p) {
|
|
return _norm(matrix(x), p);
|
|
},
|
|
'Matrix, number | BigNumber | string': function MatrixNumberBigNumberString(x, p) {
|
|
return _norm(x, p);
|
|
}
|
|
});
|
|
/**
|
|
* Calculate the plus infinity norm for a vector
|
|
* @param {Matrix} x
|
|
* @returns {number} Returns the norm
|
|
* @private
|
|
*/
|
|
|
|
function _vectorNormPlusInfinity(x) {
|
|
// norm(x, Infinity) = max(abs(x))
|
|
var pinf = 0; // skip zeros since abs(0) === 0
|
|
|
|
x.forEach(function (value) {
|
|
var v = abs(value);
|
|
|
|
if (larger(v, pinf)) {
|
|
pinf = v;
|
|
}
|
|
}, true);
|
|
return pinf;
|
|
}
|
|
/**
|
|
* Calculate the minus infinity norm for a vector
|
|
* @param {Matrix} x
|
|
* @returns {number} Returns the norm
|
|
* @private
|
|
*/
|
|
|
|
|
|
function _vectorNormMinusInfinity(x) {
|
|
// norm(x, -Infinity) = min(abs(x))
|
|
var ninf; // skip zeros since abs(0) === 0
|
|
|
|
x.forEach(function (value) {
|
|
var v = abs(value);
|
|
|
|
if (!ninf || smaller(v, ninf)) {
|
|
ninf = v;
|
|
}
|
|
}, true);
|
|
return ninf || 0;
|
|
}
|
|
/**
|
|
* Calculate the norm for a vector
|
|
* @param {Matrix} x
|
|
* @param {number | string} p
|
|
* @returns {number} Returns the norm
|
|
* @private
|
|
*/
|
|
|
|
|
|
function _vectorNorm(x, p) {
|
|
// check p
|
|
if (p === Number.POSITIVE_INFINITY || p === 'inf') {
|
|
return _vectorNormPlusInfinity(x);
|
|
}
|
|
|
|
if (p === Number.NEGATIVE_INFINITY || p === '-inf') {
|
|
return _vectorNormMinusInfinity(x);
|
|
}
|
|
|
|
if (p === 'fro') {
|
|
return _norm(x, 2);
|
|
}
|
|
|
|
if (typeof p === 'number' && !isNaN(p)) {
|
|
// check p != 0
|
|
if (!equalScalar(p, 0)) {
|
|
// norm(x, p) = sum(abs(xi) ^ p) ^ 1/p
|
|
var n = 0; // skip zeros since abs(0) === 0
|
|
|
|
x.forEach(function (value) {
|
|
n = add(pow(abs(value), p), n);
|
|
}, true);
|
|
return pow(n, 1 / p);
|
|
}
|
|
|
|
return Number.POSITIVE_INFINITY;
|
|
} // invalid parameter value
|
|
|
|
|
|
throw new Error('Unsupported parameter value');
|
|
}
|
|
/**
|
|
* Calculate the Frobenius norm for a matrix
|
|
* @param {Matrix} x
|
|
* @returns {number} Returns the norm
|
|
* @private
|
|
*/
|
|
|
|
|
|
function _matrixNormFrobenius(x) {
|
|
// norm(x) = sqrt(sum(diag(x'x)))
|
|
var fro = 0;
|
|
x.forEach(function (value, index) {
|
|
fro = add(fro, multiply(value, conj(value)));
|
|
});
|
|
return abs(sqrt(fro));
|
|
}
|
|
/**
|
|
* Calculate the norm L1 for a matrix
|
|
* @param {Matrix} x
|
|
* @returns {number} Returns the norm
|
|
* @private
|
|
*/
|
|
|
|
|
|
function _matrixNormOne(x) {
|
|
// norm(x) = the largest column sum
|
|
var c = []; // result
|
|
|
|
var maxc = 0; // skip zeros since abs(0) == 0
|
|
|
|
x.forEach(function (value, index) {
|
|
var j = index[1];
|
|
var cj = add(c[j] || 0, abs(value));
|
|
|
|
if (larger(cj, maxc)) {
|
|
maxc = cj;
|
|
}
|
|
|
|
c[j] = cj;
|
|
}, true);
|
|
return maxc;
|
|
}
|
|
/**
|
|
* Calculate the norm L2 for a matrix
|
|
* @param {Matrix} x
|
|
* @returns {number} Returns the norm
|
|
* @private
|
|
*/
|
|
|
|
|
|
function _matrixNormTwo(x) {
|
|
// norm(x) = sqrt( max eigenvalue of A*.A)
|
|
var sizeX = x.size();
|
|
|
|
if (sizeX[0] !== sizeX[1]) {
|
|
throw new RangeError('Invalid matrix dimensions');
|
|
}
|
|
|
|
var tx = ctranspose(x);
|
|
var squaredX = multiply(tx, x);
|
|
var eigenVals = eigs(squaredX).values.toArray();
|
|
var rho = eigenVals[eigenVals.length - 1];
|
|
return abs(sqrt(rho));
|
|
}
|
|
/**
|
|
* Calculate the infinity norm for a matrix
|
|
* @param {Matrix} x
|
|
* @returns {number} Returns the norm
|
|
* @private
|
|
*/
|
|
|
|
|
|
function _matrixNormInfinity(x) {
|
|
// norm(x) = the largest row sum
|
|
var r = []; // result
|
|
|
|
var maxr = 0; // skip zeros since abs(0) == 0
|
|
|
|
x.forEach(function (value, index) {
|
|
var i = index[0];
|
|
var ri = add(r[i] || 0, abs(value));
|
|
|
|
if (larger(ri, maxr)) {
|
|
maxr = ri;
|
|
}
|
|
|
|
r[i] = ri;
|
|
}, true);
|
|
return maxr;
|
|
}
|
|
/**
|
|
* Calculate the norm for a 2D Matrix (M*N)
|
|
* @param {Matrix} x
|
|
* @param {number | string} p
|
|
* @returns {number} Returns the norm
|
|
* @private
|
|
*/
|
|
|
|
|
|
function _matrixNorm(x, p) {
|
|
// check p
|
|
if (p === 1) {
|
|
return _matrixNormOne(x);
|
|
}
|
|
|
|
if (p === Number.POSITIVE_INFINITY || p === 'inf') {
|
|
return _matrixNormInfinity(x);
|
|
}
|
|
|
|
if (p === 'fro') {
|
|
return _matrixNormFrobenius(x);
|
|
}
|
|
|
|
if (p === 2) {
|
|
return _matrixNormTwo(x);
|
|
} // invalid parameter value
|
|
|
|
|
|
throw new Error('Unsupported parameter value ' + p);
|
|
}
|
|
/**
|
|
* Calculate the norm for an array
|
|
* @param {Matrix} x
|
|
* @param {number | string} p
|
|
* @returns {number} Returns the norm
|
|
* @private
|
|
*/
|
|
|
|
|
|
function _norm(x, p) {
|
|
// size
|
|
var sizeX = x.size(); // check if it is a vector
|
|
|
|
if (sizeX.length === 1) {
|
|
return _vectorNorm(x, p);
|
|
} // MxN matrix
|
|
|
|
|
|
if (sizeX.length === 2) {
|
|
if (sizeX[0] && sizeX[1]) {
|
|
return _matrixNorm(x, p);
|
|
} else {
|
|
throw new RangeError('Invalid matrix dimensions');
|
|
}
|
|
}
|
|
}
|
|
});
|
|
exports.createNorm = createNorm; |