simple-squiggle/node_modules/mathjs/lib/cjs/function/algebra/sparse/csReach.js

61 lines
1.8 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.csReach = csReach;
var _csMarked = require("./csMarked.js");
var _csMark = require("./csMark.js");
var _csDfs = require("./csDfs.js");
/**
* The csReach function computes X = Reach(B), where B is the nonzero pattern of the n-by-1
* sparse column of vector b. The function returns the set of nodes reachable from any node in B. The
* nonzero pattern xi of the solution x to the sparse linear system Lx=b is given by X=Reach(B).
*
* @param {Matrix} g The G matrix
* @param {Matrix} b The B matrix
* @param {Number} k The kth column in B
* @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
* The first n entries is the nonzero pattern, the last n entries is the stack
* @param {Array} pinv The inverse row permutation vector
*
* @return {Number} The index for the nonzero pattern
*
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
*/
function csReach(g, b, k, xi, pinv) {
// g arrays
var gptr = g._ptr;
var gsize = g._size; // b arrays
var bindex = b._index;
var bptr = b._ptr; // columns
var n = gsize[1]; // vars
var p, p0, p1; // initialize top
var top = n; // loop column indeces in B
for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) {
// node i
var i = bindex[p]; // check node i is marked
if (!(0, _csMarked.csMarked)(gptr, i)) {
// start a dfs at unmarked node i
top = (0, _csDfs.csDfs)(i, g, top, xi, pinv);
}
} // loop columns from top -> n - 1
for (p = top; p < n; p++) {
// restore G
(0, _csMark.csMark)(gptr, xi[p]);
}
return top;
}