simple-squiggle/node_modules/mathjs/lib/cjs/function/algebra/sparse/csDfs.js

88 lines
2.5 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.csDfs = csDfs;
var _csMarked = require("./csMarked.js");
var _csMark = require("./csMark.js");
var _csUnflip = require("./csUnflip.js");
/**
* Depth-first search computes the nonzero pattern xi of the directed graph G (Matrix) starting
* at nodes in B (see csReach()).
*
* @param {Number} j The starting node for the DFS algorithm
* @param {Matrix} g The G matrix to search, ptr array modified, then restored
* @param {Number} top Start index in stack xi[top..n-1]
* @param {Number} k The kth column in B
* @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
* The first n entries is the nonzero pattern, the last n entries is the stack
* @param {Array} pinv The inverse row permutation vector, must be null for L * x = b
*
* @return {Number} New value of top
*
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
*/
function csDfs(j, g, top, xi, pinv) {
// g arrays
var index = g._index;
var ptr = g._ptr;
var size = g._size; // columns
var n = size[1]; // vars
var i, p, p2; // initialize head
var head = 0; // initialize the recursion stack
xi[0] = j; // loop
while (head >= 0) {
// get j from the top of the recursion stack
j = xi[head]; // apply permutation vector
var jnew = pinv ? pinv[j] : j; // check node j is marked
if (!(0, _csMarked.csMarked)(ptr, j)) {
// mark node j as visited
(0, _csMark.csMark)(ptr, j); // update stack (last n entries in xi)
xi[n + head] = jnew < 0 ? 0 : (0, _csUnflip.csUnflip)(ptr[jnew]);
} // node j done if no unvisited neighbors
var done = 1; // examine all neighbors of j, stack (last n entries in xi)
for (p = xi[n + head], p2 = jnew < 0 ? 0 : (0, _csUnflip.csUnflip)(ptr[jnew + 1]); p < p2; p++) {
// consider neighbor node i
i = index[p]; // check we have visited node i, skip it
if ((0, _csMarked.csMarked)(ptr, i)) {
continue;
} // pause depth-first search of node j, update stack (last n entries in xi)
xi[n + head] = p; // start dfs at node i
xi[++head] = i; // node j is not done
done = 0; // break, to start dfs(i)
break;
} // check depth-first search at node j is done
if (done) {
// remove j from the recursion stack
head--; // and place in the output stack
xi[--top] = j;
}
}
return top;
}