simple-squiggle/node_modules/mathjs/lib/cjs/function/algebra/solver/usolveAll.js

213 lines
6.1 KiB
JavaScript

"use strict";
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createUsolveAll = void 0;
var _toConsumableArray2 = _interopRequireDefault(require("@babel/runtime/helpers/toConsumableArray"));
var _factory = require("../../../utils/factory.js");
var _solveValidation = require("./utils/solveValidation.js");
var name = 'usolveAll';
var dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtract', 'equalScalar', 'DenseMatrix'];
var createUsolveAll = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
var typed = _ref.typed,
matrix = _ref.matrix,
divideScalar = _ref.divideScalar,
multiplyScalar = _ref.multiplyScalar,
subtract = _ref.subtract,
equalScalar = _ref.equalScalar,
DenseMatrix = _ref.DenseMatrix;
var solveValidation = (0, _solveValidation.createSolveValidation)({
DenseMatrix: DenseMatrix
});
/**
* Finds all solutions of a linear equation system by backward substitution. Matrix must be an upper triangular matrix.
*
* `U * x = b`
*
* Syntax:
*
* math.usolveAll(U, b)
*
* Examples:
*
* const a = [[-2, 3], [2, 1]]
* const b = [11, 9]
* const x = usolveAll(a, b) // [ [[8], [9]] ]
*
* See also:
*
* usolve, lup, slu, usolve, lusolve
*
* @param {Matrix, Array} U A N x N matrix or array (U)
* @param {Matrix, Array} b A column vector with the b values
*
* @return {DenseMatrix[] | Array[]} An array of affine-independent column vectors (x) that solve the linear system
*/
return typed(name, {
'SparseMatrix, Array | Matrix': function SparseMatrixArrayMatrix(m, b) {
return _sparseBackwardSubstitution(m, b);
},
'DenseMatrix, Array | Matrix': function DenseMatrixArrayMatrix(m, b) {
return _denseBackwardSubstitution(m, b);
},
'Array, Array | Matrix': function ArrayArrayMatrix(a, b) {
var m = matrix(a);
var R = _denseBackwardSubstitution(m, b);
return R.map(function (r) {
return r.valueOf();
});
}
});
function _denseBackwardSubstitution(m, b_) {
// the algorithm is derived from
// https://www.overleaf.com/read/csvgqdxggyjv
// array of right-hand sides
var B = [solveValidation(m, b_, true)._data.map(function (e) {
return e[0];
})];
var M = m._data;
var rows = m._size[0];
var columns = m._size[1]; // loop columns backwards
for (var i = columns - 1; i >= 0; i--) {
var L = B.length; // loop right-hand sides
for (var k = 0; k < L; k++) {
var b = B[k];
if (!equalScalar(M[i][i], 0)) {
// non-singular row
b[i] = divideScalar(b[i], M[i][i]);
for (var j = i - 1; j >= 0; j--) {
// b[j] -= b[i] * M[j,i]
b[j] = subtract(b[j], multiplyScalar(b[i], M[j][i]));
}
} else if (!equalScalar(b[i], 0)) {
// singular row, nonzero RHS
if (k === 0) {
// There is no valid solution
return [];
} else {
// This RHS is invalid but other solutions may still exist
B.splice(k, 1);
k -= 1;
L -= 1;
}
} else if (k === 0) {
// singular row, RHS is zero
var bNew = (0, _toConsumableArray2.default)(b);
bNew[i] = 1;
for (var _j = i - 1; _j >= 0; _j--) {
bNew[_j] = subtract(bNew[_j], M[_j][i]);
}
B.push(bNew);
}
}
}
return B.map(function (x) {
return new DenseMatrix({
data: x.map(function (e) {
return [e];
}),
size: [rows, 1]
});
});
}
function _sparseBackwardSubstitution(m, b_) {
// array of right-hand sides
var B = [solveValidation(m, b_, true)._data.map(function (e) {
return e[0];
})];
var rows = m._size[0];
var columns = m._size[1];
var values = m._values;
var index = m._index;
var ptr = m._ptr; // loop columns backwards
for (var i = columns - 1; i >= 0; i--) {
var L = B.length; // loop right-hand sides
for (var k = 0; k < L; k++) {
var b = B[k]; // values & indices (column i)
var iValues = [];
var iIndices = []; // first & last indeces in column
var firstIndex = ptr[i];
var lastIndex = ptr[i + 1]; // find the value at [i, i]
var Mii = 0;
for (var j = lastIndex - 1; j >= firstIndex; j--) {
var J = index[j]; // check row
if (J === i) {
Mii = values[j];
} else if (J < i) {
// store upper triangular
iValues.push(values[j]);
iIndices.push(J);
}
}
if (!equalScalar(Mii, 0)) {
// non-singular row
b[i] = divideScalar(b[i], Mii); // loop upper triangular
for (var _j2 = 0, _lastIndex = iIndices.length; _j2 < _lastIndex; _j2++) {
var _J = iIndices[_j2];
b[_J] = subtract(b[_J], multiplyScalar(b[i], iValues[_j2]));
}
} else if (!equalScalar(b[i], 0)) {
// singular row, nonzero RHS
if (k === 0) {
// There is no valid solution
return [];
} else {
// This RHS is invalid but other solutions may still exist
B.splice(k, 1);
k -= 1;
L -= 1;
}
} else if (k === 0) {
// singular row, RHS is zero
var bNew = (0, _toConsumableArray2.default)(b);
bNew[i] = 1; // loop upper triangular
for (var _j3 = 0, _lastIndex2 = iIndices.length; _j3 < _lastIndex2; _j3++) {
var _J2 = iIndices[_j3];
bNew[_J2] = subtract(bNew[_J2], iValues[_j3]);
}
B.push(bNew);
}
}
}
return B.map(function (x) {
return new DenseMatrix({
data: x.map(function (e) {
return [e];
}),
size: [rows, 1]
});
});
}
});
exports.createUsolveAll = createUsolveAll;