147 lines
3.7 KiB
JavaScript
147 lines
3.7 KiB
JavaScript
import { isMatrix } from '../../utils/is.js';
|
|
import { clone } from '../../utils/object.js';
|
|
import { format } from '../../utils/string.js';
|
|
import { factory } from '../../utils/factory.js';
|
|
var name = 'det';
|
|
var dependencies = ['typed', 'matrix', 'subtract', 'multiply', 'unaryMinus', 'lup'];
|
|
export var createDet = /* #__PURE__ */factory(name, dependencies, _ref => {
|
|
var {
|
|
typed,
|
|
matrix,
|
|
subtract,
|
|
multiply,
|
|
unaryMinus,
|
|
lup
|
|
} = _ref;
|
|
|
|
/**
|
|
* Calculate the determinant of a matrix.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.det(x)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.det([[1, 2], [3, 4]]) // returns -2
|
|
*
|
|
* const A = [
|
|
* [-2, 2, 3],
|
|
* [-1, 1, 3],
|
|
* [2, 0, -1]
|
|
* ]
|
|
* math.det(A) // returns 6
|
|
*
|
|
* See also:
|
|
*
|
|
* inv
|
|
*
|
|
* @param {Array | Matrix} x A matrix
|
|
* @return {number} The determinant of `x`
|
|
*/
|
|
return typed(name, {
|
|
any: function any(x) {
|
|
return clone(x);
|
|
},
|
|
'Array | Matrix': function det(x) {
|
|
var size;
|
|
|
|
if (isMatrix(x)) {
|
|
size = x.size();
|
|
} else if (Array.isArray(x)) {
|
|
x = matrix(x);
|
|
size = x.size();
|
|
} else {
|
|
// a scalar
|
|
size = [];
|
|
}
|
|
|
|
switch (size.length) {
|
|
case 0:
|
|
// scalar
|
|
return clone(x);
|
|
|
|
case 1:
|
|
// vector
|
|
if (size[0] === 1) {
|
|
return clone(x.valueOf()[0]);
|
|
} else {
|
|
throw new RangeError('Matrix must be square ' + '(size: ' + format(size) + ')');
|
|
}
|
|
|
|
case 2:
|
|
{
|
|
// two dimensional array
|
|
var rows = size[0];
|
|
var cols = size[1];
|
|
|
|
if (rows === cols) {
|
|
return _det(x.clone().valueOf(), rows, cols);
|
|
} else {
|
|
throw new RangeError('Matrix must be square ' + '(size: ' + format(size) + ')');
|
|
}
|
|
}
|
|
|
|
default:
|
|
// multi dimensional array
|
|
throw new RangeError('Matrix must be two dimensional ' + '(size: ' + format(size) + ')');
|
|
}
|
|
}
|
|
});
|
|
/**
|
|
* Calculate the determinant of a matrix
|
|
* @param {Array[]} matrix A square, two dimensional matrix
|
|
* @param {number} rows Number of rows of the matrix (zero-based)
|
|
* @param {number} cols Number of columns of the matrix (zero-based)
|
|
* @returns {number} det
|
|
* @private
|
|
*/
|
|
|
|
function _det(matrix, rows, cols) {
|
|
if (rows === 1) {
|
|
// this is a 1 x 1 matrix
|
|
return clone(matrix[0][0]);
|
|
} else if (rows === 2) {
|
|
// this is a 2 x 2 matrix
|
|
// the determinant of [a11,a12;a21,a22] is det = a11*a22-a21*a12
|
|
return subtract(multiply(matrix[0][0], matrix[1][1]), multiply(matrix[1][0], matrix[0][1]));
|
|
} else {
|
|
// Compute the LU decomposition
|
|
var decomp = lup(matrix); // The determinant is the product of the diagonal entries of U (and those of L, but they are all 1)
|
|
|
|
var det = decomp.U[0][0];
|
|
|
|
for (var _i = 1; _i < rows; _i++) {
|
|
det = multiply(det, decomp.U[_i][_i]);
|
|
} // The determinant will be multiplied by 1 or -1 depending on the parity of the permutation matrix.
|
|
// This can be determined by counting the cycles. This is roughly a linear time algorithm.
|
|
|
|
|
|
var evenCycles = 0;
|
|
var i = 0;
|
|
var visited = [];
|
|
|
|
while (true) {
|
|
while (visited[i]) {
|
|
i++;
|
|
}
|
|
|
|
if (i >= rows) break;
|
|
var j = i;
|
|
var cycleLen = 0;
|
|
|
|
while (!visited[decomp.p[j]]) {
|
|
visited[decomp.p[j]] = true;
|
|
j = decomp.p[j];
|
|
cycleLen++;
|
|
}
|
|
|
|
if (cycleLen % 2 === 0) {
|
|
evenCycles++;
|
|
}
|
|
}
|
|
|
|
return evenCycles % 2 === 0 ? det : unaryMinus(det);
|
|
}
|
|
}
|
|
}); |