simple-squiggle/node_modules/mathjs/lib/esm/function/algebra/sparse/csLeaf.js

56 lines
1.6 KiB
JavaScript

/**
* This function determines if j is a leaf of the ith row subtree.
* Consider A(i,j), node j in ith row subtree and return lca(jprev,j)
*
* @param {Number} i The ith row subtree
* @param {Number} j The node to test
* @param {Array} w The workspace array
* @param {Number} first The index offset within the workspace for the first array
* @param {Number} maxfirst The index offset within the workspace for the maxfirst array
* @param {Number} prevleaf The index offset within the workspace for the prevleaf array
* @param {Number} ancestor The index offset within the workspace for the ancestor array
*
* @return {Object}
*
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
*/
export function csLeaf(i, j, w, first, maxfirst, prevleaf, ancestor) {
var s, sparent; // our result
var jleaf = 0;
var q; // check j is a leaf
if (i <= j || w[first + j] <= w[maxfirst + i]) {
return -1;
} // update max first[j] seen so far
w[maxfirst + i] = w[first + j]; // jprev = previous leaf of ith subtree
var jprev = w[prevleaf + i];
w[prevleaf + i] = j; // check j is first or subsequent leaf
if (jprev === -1) {
// 1st leaf, q = root of ith subtree
jleaf = 1;
q = i;
} else {
// update jleaf
jleaf = 2; // q = least common ancester (jprev,j)
for (q = jprev; q !== w[ancestor + q]; q = w[ancestor + q]) {
;
}
for (s = jprev; s !== q; s = sparent) {
// path compression
sparent = w[ancestor + s];
w[ancestor + s] = q;
}
}
return {
jleaf: jleaf,
q: q
};
}