"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createErf = void 0; var _collection = require("../../utils/collection.js"); var _number = require("../../utils/number.js"); var _factory = require("../../utils/factory.js"); /* eslint-disable no-loss-of-precision */ var name = 'erf'; var dependencies = ['typed']; var createErf = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) { var typed = _ref.typed; /** * Compute the erf function of a value using a rational Chebyshev * approximations for different intervals of x. * * This is a translation of W. J. Cody's Fortran implementation from 1987 * ( https://www.netlib.org/specfun/erf ). See the AMS publication * "Rational Chebyshev Approximations for the Error Function" by W. J. Cody * for an explanation of this process. * * For matrices, the function is evaluated element wise. * * Syntax: * * math.erf(x) * * Examples: * * math.erf(0.2) // returns 0.22270258921047847 * math.erf(-0.5) // returns -0.5204998778130465 * math.erf(4) // returns 0.9999999845827421 * * @param {number | Array | Matrix} x A real number * @return {number | Array | Matrix} The erf of `x` */ return typed('name', { number: function number(x) { var y = Math.abs(x); if (y >= MAX_NUM) { return (0, _number.sign)(x); } if (y <= THRESH) { return (0, _number.sign)(x) * erf1(y); } if (y <= 4.0) { return (0, _number.sign)(x) * (1 - erfc2(y)); } return (0, _number.sign)(x) * (1 - erfc3(y)); }, 'Array | Matrix': function ArrayMatrix(n) { return (0, _collection.deepMap)(n, this); } // TODO: For complex numbers, use the approximation for the Faddeeva function // from "More Efficient Computation of the Complex Error Function" (AMS) }); /** * Approximates the error function erf() for x <= 0.46875 using this function: * n * erf(x) = x * sum (p_j * x^(2j)) / (q_j * x^(2j)) * j=0 */ function erf1(y) { var ysq = y * y; var xnum = P[0][4] * ysq; var xden = ysq; var i; for (i = 0; i < 3; i += 1) { xnum = (xnum + P[0][i]) * ysq; xden = (xden + Q[0][i]) * ysq; } return y * (xnum + P[0][3]) / (xden + Q[0][3]); } /** * Approximates the complement of the error function erfc() for * 0.46875 <= x <= 4.0 using this function: * n * erfc(x) = e^(-x^2) * sum (p_j * x^j) / (q_j * x^j) * j=0 */ function erfc2(y) { var xnum = P[1][8] * y; var xden = y; var i; for (i = 0; i < 7; i += 1) { xnum = (xnum + P[1][i]) * y; xden = (xden + Q[1][i]) * y; } var result = (xnum + P[1][7]) / (xden + Q[1][7]); var ysq = parseInt(y * 16) / 16; var del = (y - ysq) * (y + ysq); return Math.exp(-ysq * ysq) * Math.exp(-del) * result; } /** * Approximates the complement of the error function erfc() for x > 4.0 using * this function: * * erfc(x) = (e^(-x^2) / x) * [ 1/sqrt(pi) + * n * 1/(x^2) * sum (p_j * x^(-2j)) / (q_j * x^(-2j)) ] * j=0 */ function erfc3(y) { var ysq = 1 / (y * y); var xnum = P[2][5] * ysq; var xden = ysq; var i; for (i = 0; i < 4; i += 1) { xnum = (xnum + P[2][i]) * ysq; xden = (xden + Q[2][i]) * ysq; } var result = ysq * (xnum + P[2][4]) / (xden + Q[2][4]); result = (SQRPI - result) / y; ysq = parseInt(y * 16) / 16; var del = (y - ysq) * (y + ysq); return Math.exp(-ysq * ysq) * Math.exp(-del) * result; } }); /** * Upper bound for the first approximation interval, 0 <= x <= THRESH * @constant */ exports.createErf = createErf; var THRESH = 0.46875; /** * Constant used by W. J. Cody's Fortran77 implementation to denote sqrt(pi) * @constant */ var SQRPI = 5.6418958354775628695e-1; /** * Coefficients for each term of the numerator sum (p_j) for each approximation * interval (see W. J. Cody's paper for more details) * @constant */ var P = [[3.16112374387056560e00, 1.13864154151050156e02, 3.77485237685302021e02, 3.20937758913846947e03, 1.85777706184603153e-1], [5.64188496988670089e-1, 8.88314979438837594e00, 6.61191906371416295e01, 2.98635138197400131e02, 8.81952221241769090e02, 1.71204761263407058e03, 2.05107837782607147e03, 1.23033935479799725e03, 2.15311535474403846e-8], [3.05326634961232344e-1, 3.60344899949804439e-1, 1.25781726111229246e-1, 1.60837851487422766e-2, 6.58749161529837803e-4, 1.63153871373020978e-2]]; /** * Coefficients for each term of the denominator sum (q_j) for each approximation * interval (see W. J. Cody's paper for more details) * @constant */ var Q = [[2.36012909523441209e01, 2.44024637934444173e02, 1.28261652607737228e03, 2.84423683343917062e03], [1.57449261107098347e01, 1.17693950891312499e02, 5.37181101862009858e02, 1.62138957456669019e03, 3.29079923573345963e03, 4.36261909014324716e03, 3.43936767414372164e03, 1.23033935480374942e03], [2.56852019228982242e00, 1.87295284992346047e00, 5.27905102951428412e-1, 6.05183413124413191e-2, 2.33520497626869185e-3]]; /** * Maximum/minimum safe numbers to input to erf() (in ES6+, this number is * Number.[MAX|MIN]_SAFE_INTEGER). erf() for all numbers beyond this limit will * return 1 */ var MAX_NUM = Math.pow(2, 53);