import { csCumsum } from './csCumsum.js'; import { factory } from '../../../utils/factory.js'; var name = 'csSymperm'; var dependencies = ['conj', 'SparseMatrix']; export var createCsSymperm = /* #__PURE__ */factory(name, dependencies, _ref => { var { conj, SparseMatrix } = _ref; /** * Computes the symmetric permutation of matrix A accessing only * the upper triangular part of A. * * C = P * A * P' * * @param {Matrix} a The A matrix * @param {Array} pinv The inverse of permutation vector * @param {boolean} values Process matrix values (true) * * @return {Matrix} The C matrix, C = P * A * P' * * Reference: http://faculty.cse.tamu.edu/davis/publications.html */ return function csSymperm(a, pinv, values) { // A matrix arrays var avalues = a._values; var aindex = a._index; var aptr = a._ptr; var asize = a._size; // columns var n = asize[1]; // C matrix arrays var cvalues = values && avalues ? [] : null; var cindex = []; // (nz) var cptr = []; // (n + 1) // variables var i, i2, j, j2, p, p0, p1; // create workspace vector var w = []; // (n) // count entries in each column of C for (j = 0; j < n; j++) { // column j of A is column j2 of C j2 = pinv ? pinv[j] : j; // loop values in column j for (p0 = aptr[j], p1 = aptr[j + 1], p = p0; p < p1; p++) { // row i = aindex[p]; // skip lower triangular part of A if (i > j) { continue; } // row i of A is row i2 of C i2 = pinv ? pinv[i] : i; // column count of C w[Math.max(i2, j2)]++; } } // compute column pointers of C csCumsum(cptr, w, n); // loop columns for (j = 0; j < n; j++) { // column j of A is column j2 of C j2 = pinv ? pinv[j] : j; // loop values in column j for (p0 = aptr[j], p1 = aptr[j + 1], p = p0; p < p1; p++) { // row i = aindex[p]; // skip lower triangular part of A if (i > j) { continue; } // row i of A is row i2 of C i2 = pinv ? pinv[i] : i; // C index for column j2 var q = w[Math.max(i2, j2)]++; // update C index for entry q cindex[q] = Math.min(i2, j2); // check we need to process values if (cvalues) { cvalues[q] = i2 <= j2 ? avalues[p] : conj(avalues[p]); } } } // return C matrix return new SparseMatrix({ values: cvalues, index: cindex, ptr: cptr, size: [n, n] }); }; });