import { deepMap } from '../../utils/collection.js'; import { factory } from '../../utils/factory.js'; import { gammaG, gammaNumber, gammaP } from '../../plain/number/index.js'; var name = 'gamma'; var dependencies = ['typed', 'config', 'multiplyScalar', 'pow', 'BigNumber', 'Complex']; export var createGamma = /* #__PURE__ */factory(name, dependencies, _ref => { var { typed, config, multiplyScalar, pow, BigNumber: _BigNumber, Complex: _Complex } = _ref; /** * Compute the gamma function of a value using Lanczos approximation for * small values, and an extended Stirling approximation for large values. * * For matrices, the function is evaluated element wise. * * Syntax: * * math.gamma(n) * * Examples: * * math.gamma(5) // returns 24 * math.gamma(-0.5) // returns -3.5449077018110335 * math.gamma(math.i) // returns -0.15494982830180973 - 0.49801566811835596i * * See also: * * combinations, factorial, permutations * * @param {number | Array | Matrix} n A real or complex number * @return {number | Array | Matrix} The gamma of `n` */ return typed(name, { number: gammaNumber, Complex: function Complex(n) { if (n.im === 0) { return this(n.re); } // Lanczos approximation doesn't work well with real part lower than 0.5 // So reflection formula is required if (n.re < 0.5) { // Euler's reflection formula // gamma(1-z) * gamma(z) = PI / sin(PI * z) // real part of Z should not be integer [sin(PI) == 0 -> 1/0 - undefined] // thanks to imperfect sin implementation sin(PI * n) != 0 // we can safely use it anyway var _t = new _Complex(1 - n.re, -n.im); var r = new _Complex(Math.PI * n.re, Math.PI * n.im); return new _Complex(Math.PI).div(r.sin()).div(this(_t)); } // Lanczos approximation // z -= 1 n = new _Complex(n.re - 1, n.im); // x = gammaPval[0] var x = new _Complex(gammaP[0], 0); // for (i, gammaPval) in enumerate(gammaP): for (var i = 1; i < gammaP.length; ++i) { // x += gammaPval / (z + i) var gammaPval = new _Complex(gammaP[i], 0); x = x.add(gammaPval.div(n.add(i))); } // t = z + gammaG + 0.5 var t = new _Complex(n.re + gammaG + 0.5, n.im); // y = sqrt(2 * pi) * t ** (z + 0.5) * exp(-t) * x var twoPiSqrt = Math.sqrt(2 * Math.PI); var tpow = t.pow(n.add(0.5)); var expt = t.neg().exp(); // y = [x] * [sqrt(2 * pi)] * [t ** (z + 0.5)] * [exp(-t)] return x.mul(twoPiSqrt).mul(tpow).mul(expt); }, BigNumber: function BigNumber(n) { if (n.isInteger()) { return n.isNegative() || n.isZero() ? new _BigNumber(Infinity) : bigFactorial(n.minus(1)); } if (!n.isFinite()) { return new _BigNumber(n.isNegative() ? NaN : Infinity); } throw new Error('Integer BigNumber expected'); }, 'Array | Matrix': function ArrayMatrix(n) { return deepMap(n, this); } }); /** * Calculate factorial for a BigNumber * @param {BigNumber} n * @returns {BigNumber} Returns the factorial of n */ function bigFactorial(n) { if (n < 8) { return new _BigNumber([1, 1, 2, 6, 24, 120, 720, 5040][n]); } var precision = config.precision + (Math.log(n.toNumber()) | 0); var Big = _BigNumber.clone({ precision: precision }); if (n % 2 === 1) { return n.times(bigFactorial(new _BigNumber(n - 1))); } var p = n; var prod = new Big(n); var sum = n.toNumber(); while (p > 2) { p -= 2; sum += p; prod = prod.times(sum); } return new _BigNumber(prod.toPrecision(_BigNumber.precision)); } });