import { clone } from '../../utils/object.js'; import { format } from '../../utils/string.js'; import { factory } from '../../utils/factory.js'; var name = 'transpose'; var dependencies = ['typed', 'matrix']; export var createTranspose = /* #__PURE__ */factory(name, dependencies, _ref => { var { typed, matrix } = _ref; /** * Transpose a matrix. All values of the matrix are reflected over its * main diagonal. Only applicable to two dimensional matrices containing * a vector (i.e. having size `[1,n]` or `[n,1]`). One dimensional * vectors and scalars return the input unchanged. * * Syntax: * * math.transpose(x) * * Examples: * * const A = [[1, 2, 3], [4, 5, 6]] * math.transpose(A) // returns [[1, 4], [2, 5], [3, 6]] * * See also: * * diag, inv, subset, squeeze * * @param {Array | Matrix} x Matrix to be transposed * @return {Array | Matrix} The transposed matrix */ return typed('transpose', { Array: function Array(x) { // use dense matrix implementation return this(matrix(x)).valueOf(); }, Matrix: function Matrix(x) { // matrix size var size = x.size(); // result var c; // process dimensions switch (size.length) { case 1: // vector c = x.clone(); break; case 2: { // rows and columns var rows = size[0]; var columns = size[1]; // check columns if (columns === 0) { // throw exception throw new RangeError('Cannot transpose a 2D matrix with no columns (size: ' + format(size) + ')'); } // process storage format switch (x.storage()) { case 'dense': c = _denseTranspose(x, rows, columns); break; case 'sparse': c = _sparseTranspose(x, rows, columns); break; } } break; default: // multi dimensional throw new RangeError('Matrix must be a vector or two dimensional (size: ' + format(this._size) + ')'); } return c; }, // scalars any: function any(x) { return clone(x); } }); function _denseTranspose(m, rows, columns) { // matrix array var data = m._data; // transposed matrix data var transposed = []; var transposedRow; // loop columns for (var j = 0; j < columns; j++) { // initialize row transposedRow = transposed[j] = []; // loop rows for (var i = 0; i < rows; i++) { // set data transposedRow[i] = clone(data[i][j]); } } // return matrix return m.createDenseMatrix({ data: transposed, size: [columns, rows], datatype: m._datatype }); } function _sparseTranspose(m, rows, columns) { // matrix arrays var values = m._values; var index = m._index; var ptr = m._ptr; // result matrices var cvalues = values ? [] : undefined; var cindex = []; var cptr = []; // row counts var w = []; for (var x = 0; x < rows; x++) { w[x] = 0; } // vars var p, l, j; // loop values in matrix for (p = 0, l = index.length; p < l; p++) { // number of values in row w[index[p]]++; } // cumulative sum var sum = 0; // initialize cptr with the cummulative sum of row counts for (var i = 0; i < rows; i++) { // update cptr cptr.push(sum); // update sum sum += w[i]; // update w w[i] = cptr[i]; } // update cptr cptr.push(sum); // loop columns for (j = 0; j < columns; j++) { // values & index in column for (var k0 = ptr[j], k1 = ptr[j + 1], k = k0; k < k1; k++) { // C values & index var q = w[index[k]]++; // C[j, i] = A[i, j] cindex[q] = j; // check we need to process values (pattern matrix) if (values) { cvalues[q] = clone(values[k]); } } } // return matrix return m.createSparseMatrix({ values: cvalues, index: cindex, ptr: cptr, size: [columns, rows], datatype: m._datatype }); } });