import { clone } from '../../../utils/object.js'; export function createComplexEigs(_ref) { var { addScalar, subtract, flatten, multiply, multiplyScalar, divideScalar, sqrt, abs, bignumber, diag, inv, qr, usolve, usolveAll, equal, complex, larger, smaller, matrixFromColumns, dot } = _ref; /** * @param {number[][]} arr the matrix to find eigenvalues of * @param {number} N size of the matrix * @param {number|BigNumber} prec precision, anything lower will be considered zero * @param {'number'|'BigNumber'|'Complex'} type * @param {boolean} findVectors should we find eigenvectors? * * @returns {{ values: number[], vectors: number[][] }} */ function complexEigs(arr, N, prec, type, findVectors) { if (findVectors === undefined) { findVectors = true; } // TODO check if any row/col are zero except the diagonal // make sure corresponding rows and columns have similar magnitude // important because of numerical stability // MODIFIES arr by side effect! var R = balance(arr, N, prec, type, findVectors); // R is the row transformation matrix // arr = A' = R A R⁻¹, A is the original matrix // (if findVectors is false, R is undefined) // (And so to return to original matrix: A = R⁻¹ arr R) // TODO if magnitudes of elements vary over many orders, // move greatest elements to the top left corner // using similarity transformations, reduce the matrix // to Hessenberg form (upper triangular plus one subdiagonal row) // updates the transformation matrix R with new row operationsq // MODIFIES arr by side effect! reduceToHessenberg(arr, N, prec, type, findVectors, R); // still true that original A = R⁻¹ arr R) // find eigenvalues var { values, C } = iterateUntilTriangular(arr, N, prec, type, findVectors); // values is the list of eigenvalues, C is the column // transformation matrix that transforms arr, the hessenberg // matrix, to upper triangular // (So U = C⁻¹ arr C and the relationship between current arr // and original A is unchanged.) var vectors; if (findVectors) { vectors = findEigenvectors(arr, N, C, R, values, prec, type); vectors = matrixFromColumns(...vectors); } return { values, vectors }; } /** * @param {number[][]} arr * @param {number} N * @param {number} prec * @param {'number'|'BigNumber'|'Complex'} type * @returns {number[][]} */ function balance(arr, N, prec, type, findVectors) { var big = type === 'BigNumber'; var cplx = type === 'Complex'; var realzero = big ? bignumber(0) : 0; var one = big ? bignumber(1) : cplx ? complex(1) : 1; var realone = big ? bignumber(1) : 1; // base of the floating-point arithmetic var radix = big ? bignumber(10) : 2; var radixSq = multiplyScalar(radix, radix); // the diagonal transformation matrix R var Rdiag; if (findVectors) { Rdiag = Array(N).fill(one); } // this isn't the only time we loop thru the matrix... var last = false; while (!last) { // ...haha I'm joking! unless... last = true; for (var i = 0; i < N; i++) { // compute the taxicab norm of i-th column and row // TODO optimize for complex numbers var colNorm = realzero; var rowNorm = realzero; for (var j = 0; j < N; j++) { if (i === j) continue; var c = abs(arr[i][j]); // should be real colNorm = addScalar(colNorm, c); rowNorm = addScalar(rowNorm, c); } if (!equal(colNorm, 0) && !equal(rowNorm, 0)) { // find integer power closest to balancing the matrix // (we want to scale only by integer powers of radix, // so that we don't lose any precision due to round-off) var f = realone; var _c = colNorm; var rowDivRadix = divideScalar(rowNorm, radix); var rowMulRadix = multiplyScalar(rowNorm, radix); while (smaller(_c, rowDivRadix)) { _c = multiplyScalar(_c, radixSq); f = multiplyScalar(f, radix); } while (larger(_c, rowMulRadix)) { _c = divideScalar(_c, radixSq); f = divideScalar(f, radix); } // check whether balancing is needed // condition = (c + rowNorm) / f < 0.95 * (colNorm + rowNorm) var condition = smaller(divideScalar(addScalar(_c, rowNorm), f), multiplyScalar(addScalar(colNorm, rowNorm), 0.95)); // apply balancing similarity transformation if (condition) { // we should loop once again to check whether // another rebalancing is needed last = false; var g = divideScalar(1, f); for (var _j = 0; _j < N; _j++) { if (i === _j) { continue; } arr[i][_j] = multiplyScalar(arr[i][_j], f); arr[_j][i] = multiplyScalar(arr[_j][i], g); } // keep track of transformations if (findVectors) { Rdiag[i] = multiplyScalar(Rdiag[i], f); } } } } } // return the diagonal row transformation matrix return diag(Rdiag); } /** * @param {number[][]} arr * @param {number} N * @param {number} prec * @param {'number'|'BigNumber'|'Complex'} type * @param {boolean} findVectors * @param {number[][]} R the row transformation matrix that will be modified */ function reduceToHessenberg(arr, N, prec, type, findVectors, R) { var big = type === 'BigNumber'; var cplx = type === 'Complex'; var zero = big ? bignumber(0) : cplx ? complex(0) : 0; if (big) { prec = bignumber(prec); } for (var i = 0; i < N - 2; i++) { // Find the largest subdiag element in the i-th col var maxIndex = 0; var max = zero; for (var j = i + 1; j < N; j++) { var el = arr[j][i]; if (smaller(abs(max), abs(el))) { max = el; maxIndex = j; } } // This col is pivoted, no need to do anything if (smaller(abs(max), prec)) { continue; } if (maxIndex !== i + 1) { // Interchange maxIndex-th and (i+1)-th row var tmp1 = arr[maxIndex]; arr[maxIndex] = arr[i + 1]; arr[i + 1] = tmp1; // Interchange maxIndex-th and (i+1)-th column for (var _j2 = 0; _j2 < N; _j2++) { var tmp2 = arr[_j2][maxIndex]; arr[_j2][maxIndex] = arr[_j2][i + 1]; arr[_j2][i + 1] = tmp2; } // keep track of transformations if (findVectors) { var tmp3 = R[maxIndex]; R[maxIndex] = R[i + 1]; R[i + 1] = tmp3; } } // Reduce following rows and columns for (var _j3 = i + 2; _j3 < N; _j3++) { var n = divideScalar(arr[_j3][i], max); if (n === 0) { continue; } // from j-th row subtract n-times (i+1)th row for (var k = 0; k < N; k++) { arr[_j3][k] = subtract(arr[_j3][k], multiplyScalar(n, arr[i + 1][k])); } // to (i+1)th column add n-times j-th column for (var _k = 0; _k < N; _k++) { arr[_k][i + 1] = addScalar(arr[_k][i + 1], multiplyScalar(n, arr[_k][_j3])); } // keep track of transformations if (findVectors) { for (var _k2 = 0; _k2 < N; _k2++) { R[_j3][_k2] = subtract(R[_j3][_k2], multiplyScalar(n, R[i + 1][_k2])); } } } } return R; } /** * @returns {{values: values, C: Matrix}} * @see Press, Wiliams: Numerical recipes in Fortran 77 * @see https://en.wikipedia.org/wiki/QR_algorithm */ function iterateUntilTriangular(A, N, prec, type, findVectors) { var big = type === 'BigNumber'; var cplx = type === 'Complex'; var one = big ? bignumber(1) : cplx ? complex(1) : 1; if (big) { prec = bignumber(prec); } // The Francis Algorithm // The core idea of this algorithm is that doing successive // A' = Q⁺AQ transformations will eventually converge to block- // upper-triangular with diagonal blocks either 1x1 or 2x2. // The Q here is the one from the QR decomposition, A = QR. // Since the eigenvalues of a block-upper-triangular matrix are // the eigenvalues of its diagonal blocks and we know how to find // eigenvalues of a 2x2 matrix, we know the eigenvalues of A. var arr = clone(A); // the list of converged eigenvalues var lambdas = []; // size of arr, which will get smaller as eigenvalues converge var n = N; // the diagonal of the block-diagonal matrix that turns // converged 2x2 matrices into upper triangular matrices var Sdiag = []; // N×N matrix describing the overall transformation done during the QR algorithm var Qtotal = findVectors ? diag(Array(N).fill(one)) : undefined; // n×n matrix describing the QR transformations done since last convergence var Qpartial = findVectors ? diag(Array(n).fill(one)) : undefined; // last eigenvalue converged before this many steps var lastConvergenceBefore = 0; while (lastConvergenceBefore <= 100) { lastConvergenceBefore += 1; // TODO if the convergence is slow, do something clever // Perform the factorization var k = 0; // TODO set close to an eigenvalue for (var i = 0; i < n; i++) { arr[i][i] = subtract(arr[i][i], k); } // TODO do an implicit QR transformation var { Q, R } = qr(arr); arr = multiply(R, Q); for (var _i = 0; _i < n; _i++) { arr[_i][_i] = addScalar(arr[_i][_i], k); } // keep track of transformations if (findVectors) { Qpartial = multiply(Qpartial, Q); } // The rightmost diagonal element converged to an eigenvalue if (n === 1 || smaller(abs(arr[n - 1][n - 2]), prec)) { lastConvergenceBefore = 0; lambdas.push(arr[n - 1][n - 1]); // keep track of transformations if (findVectors) { Sdiag.unshift([[1]]); inflateMatrix(Qpartial, N); Qtotal = multiply(Qtotal, Qpartial); if (n > 1) { Qpartial = diag(Array(n - 1).fill(one)); } } // reduce the matrix size n -= 1; arr.pop(); for (var _i2 = 0; _i2 < n; _i2++) { arr[_i2].pop(); } // The rightmost diagonal 2x2 block converged } else if (n === 2 || smaller(abs(arr[n - 2][n - 3]), prec)) { lastConvergenceBefore = 0; var ll = eigenvalues2x2(arr[n - 2][n - 2], arr[n - 2][n - 1], arr[n - 1][n - 2], arr[n - 1][n - 1]); lambdas.push(...ll); // keep track of transformations if (findVectors) { Sdiag.unshift(jordanBase2x2(arr[n - 2][n - 2], arr[n - 2][n - 1], arr[n - 1][n - 2], arr[n - 1][n - 1], ll[0], ll[1], prec, type)); inflateMatrix(Qpartial, N); Qtotal = multiply(Qtotal, Qpartial); if (n > 2) { Qpartial = diag(Array(n - 2).fill(one)); } } // reduce the matrix size n -= 2; arr.pop(); arr.pop(); for (var _i3 = 0; _i3 < n; _i3++) { arr[_i3].pop(); arr[_i3].pop(); } } if (n === 0) { break; } } // standard sorting lambdas.sort((a, b) => +subtract(abs(a), abs(b))); // the algorithm didn't converge if (lastConvergenceBefore > 100) { var err = Error('The eigenvalues failed to converge. Only found these eigenvalues: ' + lambdas.join(', ')); err.values = lambdas; err.vectors = []; throw err; } // combine the overall QR transformation Qtotal with the subsequent // transformation S that turns the diagonal 2x2 blocks to upper triangular var C = findVectors ? multiply(Qtotal, blockDiag(Sdiag, N)) : undefined; return { values: lambdas, C }; } /** * @param {Matrix} A hessenberg-form matrix * @param {number} N size of A * @param {Matrix} C column transformation matrix that turns A into upper triangular * @param {Matrix} R similarity that turns original matrix into A * @param {number[]} values array of eigenvalues of A * @param {'number'|'BigNumber'|'Complex'} type * @returns {number[][]} eigenvalues */ function findEigenvectors(A, N, C, R, values, prec, type) { var Cinv = inv(C); var U = multiply(Cinv, A, C); var big = type === 'BigNumber'; var cplx = type === 'Complex'; var zero = big ? bignumber(0) : cplx ? complex(0) : 0; var one = big ? bignumber(1) : cplx ? complex(1) : 1; // turn values into a kind of "multiset" // this way it is easier to find eigenvectors var uniqueValues = []; var multiplicities = []; for (var λ of values) { var i = indexOf(uniqueValues, λ, equal); if (i === -1) { uniqueValues.push(λ); multiplicities.push(1); } else { multiplicities[i] += 1; } } // find eigenvectors by solving U − λE = 0 // TODO replace with an iterative eigenvector algorithm // (this one might fail for imprecise eigenvalues) var vectors = []; var len = uniqueValues.length; var b = Array(N).fill(zero); var E = diag(Array(N).fill(one)); // eigenvalues for which usolve failed (due to numerical error) var failedLambdas = []; var _loop = function _loop(_i4) { var λ = uniqueValues[_i4]; var S = subtract(U, multiply(λ, E)); // the characteristic matrix var solutions = usolveAll(S, b); solutions.shift(); // ignore the null vector // looks like we missed something, try inverse iteration while (solutions.length < multiplicities[_i4]) { var approxVec = inverseIterate(S, N, solutions, prec, type); if (approxVec == null) { // no more vectors were found failedLambdas.push(λ); break; } solutions.push(approxVec); } // Transform back into original array coordinates var correction = multiply(inv(R), C); solutions = solutions.map(v => multiply(correction, v)); vectors.push(...solutions.map(v => flatten(v))); }; for (var _i4 = 0; _i4 < len; _i4++) { _loop(_i4); } if (failedLambdas.length !== 0) { var err = new Error('Failed to find eigenvectors for the following eigenvalues: ' + failedLambdas.join(', ')); err.values = values; err.vectors = vectors; throw err; } return vectors; } /** * Compute the eigenvalues of an 2x2 matrix * @return {[number,number]} */ function eigenvalues2x2(a, b, c, d) { // λ± = ½ trA ± ½ √( tr²A - 4 detA ) var trA = addScalar(a, d); var detA = subtract(multiplyScalar(a, d), multiplyScalar(b, c)); var x = multiplyScalar(trA, 0.5); var y = multiplyScalar(sqrt(subtract(multiplyScalar(trA, trA), multiplyScalar(4, detA))), 0.5); return [addScalar(x, y), subtract(x, y)]; } /** * For an 2x2 matrix compute the transformation matrix S, * so that SAS⁻¹ is an upper triangular matrix * @return {[[number,number],[number,number]]} * @see https://math.berkeley.edu/~ogus/old/Math_54-05/webfoils/jordan.pdf * @see http://people.math.harvard.edu/~knill/teaching/math21b2004/exhibits/2dmatrices/index.html */ function jordanBase2x2(a, b, c, d, l1, l2, prec, type) { var big = type === 'BigNumber'; var cplx = type === 'Complex'; var zero = big ? bignumber(0) : cplx ? complex(0) : 0; var one = big ? bignumber(1) : cplx ? complex(1) : 1; // matrix is already upper triangular // return an identity matrix if (smaller(abs(c), prec)) { return [[one, zero], [zero, one]]; } // matrix is diagonalizable // return its eigenvectors as columns if (larger(abs(subtract(l1, l2)), prec)) { return [[subtract(l1, d), subtract(l2, d)], [c, c]]; } // matrix is not diagonalizable // compute off-diagonal elements of N = A - λI // N₁₂ = 0 ⇒ S = ( N⃗₁, I⃗₁ ) // N₁₂ ≠ 0 ⇒ S = ( N⃗₂, I⃗₂ ) var na = subtract(a, l1); var nb = subtract(b, l1); var nc = subtract(c, l1); var nd = subtract(d, l1); if (smaller(abs(nb), prec)) { return [[na, one], [nc, zero]]; } else { return [[nb, zero], [nd, one]]; } } /** * Enlarge the matrix from n×n to N×N, setting the new * elements to 1 on diagonal and 0 elsewhere */ function inflateMatrix(arr, N) { // add columns for (var i = 0; i < arr.length; i++) { arr[i].push(...Array(N - arr[i].length).fill(0)); } // add rows for (var _i5 = arr.length; _i5 < N; _i5++) { arr.push(Array(N).fill(0)); arr[_i5][_i5] = 1; } return arr; } /** * Create a block-diagonal matrix with the given square matrices on the diagonal * @param {Matrix[] | number[][][]} arr array of matrices to be placed on the diagonal * @param {number} N the size of the resulting matrix */ function blockDiag(arr, N) { var M = []; for (var i = 0; i < N; i++) { M[i] = Array(N).fill(0); } var I = 0; for (var sub of arr) { var n = sub.length; for (var _i6 = 0; _i6 < n; _i6++) { for (var j = 0; j < n; j++) { M[I + _i6][I + j] = sub[_i6][j]; } } I += n; } return M; } /** * Finds the index of an element in an array using a custom equality function * @template T * @param {Array} arr array in which to search * @param {T} el the element to find * @param {function(T, T): boolean} fn the equality function, first argument is an element of `arr`, the second is always `el` * @returns {number} the index of `el`, or -1 when it's not in `arr` */ function indexOf(arr, el, fn) { for (var i = 0; i < arr.length; i++) { if (fn(arr[i], el)) { return i; } } return -1; } /** * Provided a near-singular upper-triangular matrix A and a list of vectors, * finds an eigenvector of A with the smallest eigenvalue, which is orthogonal * to each vector in the list * @template T * @param {T[][]} A near-singular square matrix * @param {number} N dimension * @param {T[][]} orthog list of vectors * @param {number} prec epsilon * @param {'number'|'BigNumber'|'Complex'} type * @return {T[] | null} eigenvector * * @see Numerical Recipes for Fortran 77 – 11.7 Eigenvalues or Eigenvectors by Inverse Iteration */ function inverseIterate(A, N, orthog, prec, type) { var largeNum = type === 'BigNumber' ? bignumber(1000) : 1000; var b; // the vector // you better choose a random vector before I count to five var i = 0; while (true) { b = randomOrthogonalVector(N, orthog, type); b = usolve(A, b); if (larger(norm(b), largeNum)) { break; } if (++i >= 5) { return null; } } // you better converge before I count to ten i = 0; while (true) { var c = usolve(A, b); if (smaller(norm(orthogonalComplement(b, [c])), prec)) { break; } if (++i >= 10) { return null; } b = normalize(c); } return b; } /** * Generates a random unit vector of dimension N, orthogonal to each vector in the list * @template T * @param {number} N dimension * @param {T[][]} orthog list of vectors * @param {'number'|'BigNumber'|'Complex'} type * @returns {T[]} random vector */ function randomOrthogonalVector(N, orthog, type) { var big = type === 'BigNumber'; var cplx = type === 'Complex'; // generate random vector with the correct type var v = Array(N).fill(0).map(_ => 2 * Math.random() - 1); if (big) { v = v.map(n => bignumber(n)); } if (cplx) { v = v.map(n => complex(n)); } // project to orthogonal complement v = orthogonalComplement(v, orthog); // normalize return normalize(v, type); } /** * Project vector v to the orthogonal complement of an array of vectors */ function orthogonalComplement(v, orthog) { for (var w of orthog) { // v := v − (w, v)/∥w∥² w v = subtract(v, multiply(divideScalar(dot(w, v), dot(w, w)), w)); } return v; } /** * Calculate the norm of a vector. * We can't use math.norm because factory can't handle circular dependency. * Seriously, I'm really fed up with factory. */ function norm(v) { return abs(sqrt(dot(v, v))); } /** * Normalize a vector * @template T * @param {T[]} v * @param {'number'|'BigNumber'|'Complex'} type * @returns {T[]} normalized vec */ function normalize(v, type) { var big = type === 'BigNumber'; var cplx = type === 'Complex'; var one = big ? bignumber(1) : cplx ? complex(1) : 1; return multiply(divideScalar(one, norm(v)), v); } return complexEigs; }