import { factory } from '../../utils/factory.js'; import { flatten } from '../../utils/array.js'; var name = 'hypot'; var dependencies = ['typed', 'abs', 'addScalar', 'divideScalar', 'multiplyScalar', 'sqrt', 'smaller', 'isPositive']; export var createHypot = /* #__PURE__ */factory(name, dependencies, _ref => { var { typed, abs, addScalar, divideScalar, multiplyScalar, sqrt, smaller, isPositive } = _ref; /** * Calculate the hypotenusa of a list with values. The hypotenusa is defined as: * * hypot(a, b, c, ...) = sqrt(a^2 + b^2 + c^2 + ...) * * For matrix input, the hypotenusa is calculated for all values in the matrix. * * Syntax: * * math.hypot(a, b, ...) * math.hypot([a, b, c, ...]) * * Examples: * * math.hypot(3, 4) // 5 * math.hypot(3, 4, 5) // 7.0710678118654755 * math.hypot([3, 4, 5]) // 7.0710678118654755 * math.hypot(-2) // 2 * * See also: * * abs, norm * * @param {... number | BigNumber | Array | Matrix} args A list with numeric values or an Array or Matrix. * Matrix and Array input is flattened and returns a * single number for the whole matrix. * @return {number | BigNumber} Returns the hypothenusa of the input values. */ return typed(name, { '... number | BigNumber': _hypot, Array: function Array(x) { return this.apply(this, flatten(x)); }, Matrix: function Matrix(x) { return this.apply(this, flatten(x.toArray())); } }); /** * Calculate the hypotenusa for an Array with values * @param {Array.} args * @return {number | BigNumber} Returns the result * @private */ function _hypot(args) { // code based on `hypot` from es6-shim: // https://github.com/paulmillr/es6-shim/blob/master/es6-shim.js#L1619-L1633 var result = 0; var largest = 0; for (var i = 0; i < args.length; i++) { var value = abs(args[i]); if (smaller(largest, value)) { result = multiplyScalar(result, multiplyScalar(divideScalar(largest, value), divideScalar(largest, value))); result = addScalar(result, 1); largest = value; } else { result = addScalar(result, isPositive(value) ? multiplyScalar(divideScalar(value, largest), divideScalar(value, largest)) : value); } } return multiplyScalar(largest, sqrt(result)); } });