import { csMarked } from './csMarked.js'; import { csMark } from './csMark.js'; import { csDfs } from './csDfs.js'; /** * The csReach function computes X = Reach(B), where B is the nonzero pattern of the n-by-1 * sparse column of vector b. The function returns the set of nodes reachable from any node in B. The * nonzero pattern xi of the solution x to the sparse linear system Lx=b is given by X=Reach(B). * * @param {Matrix} g The G matrix * @param {Matrix} b The B matrix * @param {Number} k The kth column in B * @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n * The first n entries is the nonzero pattern, the last n entries is the stack * @param {Array} pinv The inverse row permutation vector * * @return {Number} The index for the nonzero pattern * * Reference: http://faculty.cse.tamu.edu/davis/publications.html */ export function csReach(g, b, k, xi, pinv) { // g arrays var gptr = g._ptr; var gsize = g._size; // b arrays var bindex = b._index; var bptr = b._ptr; // columns var n = gsize[1]; // vars var p, p0, p1; // initialize top var top = n; // loop column indeces in B for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) { // node i var i = bindex[p]; // check node i is marked if (!csMarked(gptr, i)) { // start a dfs at unmarked node i top = csDfs(i, g, top, xi, pinv); } } // loop columns from top -> n - 1 for (p = top; p < n; p++) { // restore G csMark(gptr, xi[p]); } return top; }