import { csMark } from './csMark.js'; import { csMarked } from './csMarked.js'; /** * Find nonzero pattern of Cholesky L(k,1:k-1) using etree and triu(A(:,k)) * * @param {Matrix} a The A matrix * @param {Number} k The kth column in A * @param {Array} parent The parent vector from the symbolic analysis result * @param {Array} w The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n * The first n entries is the nonzero pattern, the last n entries is the stack * * @return {Number} The index for the nonzero pattern * * Reference: http://faculty.cse.tamu.edu/davis/publications.html */ export function csEreach(a, k, parent, w) { // a arrays var aindex = a._index; var aptr = a._ptr; var asize = a._size; // columns var n = asize[1]; // initialize top var top = n; // vars var p, p0, p1, len; // mark node k as visited csMark(w, k); // loop values & index for column k for (p0 = aptr[k], p1 = aptr[k + 1], p = p0; p < p1; p++) { // A(i,k) is nonzero var i = aindex[p]; // only use upper triangular part of A if (i > k) { continue; } // traverse up etree for (len = 0; !csMarked(w, i); i = parent[i]) { // L(k,i) is nonzero, last n entries in w w[n + len++] = i; // mark i as visited csMark(w, i); } while (len > 0) { // decrement top & len --top; --len; // push path onto stack, last n entries in w w[n + top] = w[n + len]; } } // unmark all nodes for (p = top; p < n; p++) { // use stack value, last n entries in w csMark(w, w[n + p]); } // unmark node k csMark(w, k); // s[top..n-1] contains pattern of L(k,:) return top; }