import { factory } from '../../../utils/factory.js'; import { csFkeep } from './csFkeep.js'; import { csFlip } from './csFlip.js'; import { csTdfs } from './csTdfs.js'; var name = 'csAmd'; var dependencies = ['add', 'multiply', 'transpose']; export var createCsAmd = /* #__PURE__ */factory(name, dependencies, _ref => { var { add, multiply, transpose } = _ref; /** * Approximate minimum degree ordering. The minimum degree algorithm is a widely used * heuristic for finding a permutation P so that P*A*P' has fewer nonzeros in its factorization * than A. It is a gready method that selects the sparsest pivot row and column during the course * of a right looking sparse Cholesky factorization. * * Reference: http://faculty.cse.tamu.edu/davis/publications.html * * @param {Number} order 0: Natural, 1: Cholesky, 2: LU, 3: QR * @param {Matrix} m Sparse Matrix */ return function csAmd(order, a) { // check input parameters if (!a || order <= 0 || order > 3) { return null; } // a matrix arrays var asize = a._size; // rows and columns var m = asize[0]; var n = asize[1]; // initialize vars var lemax = 0; // dense threshold var dense = Math.max(16, 10 * Math.sqrt(n)); dense = Math.min(n - 2, dense); // create target matrix C var cm = _createTargetMatrix(order, a, m, n, dense); // drop diagonal entries csFkeep(cm, _diag, null); // C matrix arrays var cindex = cm._index; var cptr = cm._ptr; // number of nonzero elements in C var cnz = cptr[n]; // allocate result (n+1) var P = []; // create workspace (8 * (n + 1)) var W = []; var len = 0; // first n + 1 entries var nv = n + 1; // next n + 1 entries var next = 2 * (n + 1); // next n + 1 entries var head = 3 * (n + 1); // next n + 1 entries var elen = 4 * (n + 1); // next n + 1 entries var degree = 5 * (n + 1); // next n + 1 entries var w = 6 * (n + 1); // next n + 1 entries var hhead = 7 * (n + 1); // last n + 1 entries // use P as workspace for last var last = P; // initialize quotient graph var mark = _initializeQuotientGraph(n, cptr, W, len, head, last, next, hhead, nv, w, elen, degree); // initialize degree lists var nel = _initializeDegreeLists(n, cptr, W, degree, elen, w, dense, nv, head, last, next); // minimum degree node var mindeg = 0; // vars var i, j, k, k1, k2, e, pj, ln, nvi, pk, eln, p1, p2, pn, h, d; // while (selecting pivots) do while (nel < n) { // select node of minimum approximate degree. amd() is now ready to start eliminating the graph. It first // finds a node k of minimum degree and removes it from its degree list. The variable nel keeps track of thow // many nodes have been eliminated. for (k = -1; mindeg < n && (k = W[head + mindeg]) === -1; mindeg++) { ; } if (W[next + k] !== -1) { last[W[next + k]] = -1; } // remove k from degree list W[head + mindeg] = W[next + k]; // elenk = |Ek| var elenk = W[elen + k]; // # of nodes k represents var nvk = W[nv + k]; // W[nv + k] nodes of A eliminated nel += nvk; // Construct a new element. The new element Lk is constructed in place if |Ek| = 0. nv[i] is // negated for all nodes i in Lk to flag them as members of this set. Each node i is removed from the // degree lists. All elements e in Ek are absorved into element k. var dk = 0; // flag k as in Lk W[nv + k] = -nvk; var p = cptr[k]; // do in place if W[elen + k] === 0 var pk1 = elenk === 0 ? p : cnz; var pk2 = pk1; for (k1 = 1; k1 <= elenk + 1; k1++) { if (k1 > elenk) { // search the nodes in k e = k; // list of nodes starts at cindex[pj] pj = p; // length of list of nodes in k ln = W[len + k] - elenk; } else { // search the nodes in e e = cindex[p++]; pj = cptr[e]; // length of list of nodes in e ln = W[len + e]; } for (k2 = 1; k2 <= ln; k2++) { i = cindex[pj++]; // check node i dead, or seen if ((nvi = W[nv + i]) <= 0) { continue; } // W[degree + Lk] += size of node i dk += nvi; // negate W[nv + i] to denote i in Lk W[nv + i] = -nvi; // place i in Lk cindex[pk2++] = i; if (W[next + i] !== -1) { last[W[next + i]] = last[i]; } // check we need to remove i from degree list if (last[i] !== -1) { W[next + last[i]] = W[next + i]; } else { W[head + W[degree + i]] = W[next + i]; } } if (e !== k) { // absorb e into k cptr[e] = csFlip(k); // e is now a dead element W[w + e] = 0; } } // cindex[cnz...nzmax] is free if (elenk !== 0) { cnz = pk2; } // external degree of k - |Lk\i| W[degree + k] = dk; // element k is in cindex[pk1..pk2-1] cptr[k] = pk1; W[len + k] = pk2 - pk1; // k is now an element W[elen + k] = -2; // Find set differences. The scan1 function now computes the set differences |Le \ Lk| for all elements e. At the start of the // scan, no entry in the w array is greater than or equal to mark. // clear w if necessary mark = _wclear(mark, lemax, W, w, n); // scan 1: find |Le\Lk| for (pk = pk1; pk < pk2; pk++) { i = cindex[pk]; // check if W[elen + i] empty, skip it if ((eln = W[elen + i]) <= 0) { continue; } // W[nv + i] was negated nvi = -W[nv + i]; var wnvi = mark - nvi; // scan Ei for (p = cptr[i], p1 = cptr[i] + eln - 1; p <= p1; p++) { e = cindex[p]; if (W[w + e] >= mark) { // decrement |Le\Lk| W[w + e] -= nvi; } else if (W[w + e] !== 0) { // ensure e is a live element, 1st time e seen in scan 1 W[w + e] = W[degree + e] + wnvi; } } } // degree update // The second pass computes the approximate degree di, prunes the sets Ei and Ai, and computes a hash // function h(i) for all nodes in Lk. // scan2: degree update for (pk = pk1; pk < pk2; pk++) { // consider node i in Lk i = cindex[pk]; p1 = cptr[i]; p2 = p1 + W[elen + i] - 1; pn = p1; // scan Ei for (h = 0, d = 0, p = p1; p <= p2; p++) { e = cindex[p]; // check e is an unabsorbed element if (W[w + e] !== 0) { // dext = |Le\Lk| var dext = W[w + e] - mark; if (dext > 0) { // sum up the set differences d += dext; // keep e in Ei cindex[pn++] = e; // compute the hash of node i h += e; } else { // aggressive absorb. e->k cptr[e] = csFlip(k); // e is a dead element W[w + e] = 0; } } } // W[elen + i] = |Ei| W[elen + i] = pn - p1 + 1; var p3 = pn; var p4 = p1 + W[len + i]; // prune edges in Ai for (p = p2 + 1; p < p4; p++) { j = cindex[p]; // check node j dead or in Lk var nvj = W[nv + j]; if (nvj <= 0) { continue; } // degree(i) += |j| d += nvj; // place j in node list of i cindex[pn++] = j; // compute hash for node i h += j; } // check for mass elimination if (d === 0) { // absorb i into k cptr[i] = csFlip(k); nvi = -W[nv + i]; // |Lk| -= |i| dk -= nvi; // |k| += W[nv + i] nvk += nvi; nel += nvi; W[nv + i] = 0; // node i is dead W[elen + i] = -1; } else { // update degree(i) W[degree + i] = Math.min(W[degree + i], d); // move first node to end cindex[pn] = cindex[p3]; // move 1st el. to end of Ei cindex[p3] = cindex[p1]; // add k as 1st element in of Ei cindex[p1] = k; // new len of adj. list of node i W[len + i] = pn - p1 + 1; // finalize hash of i h = (h < 0 ? -h : h) % n; // place i in hash bucket W[next + i] = W[hhead + h]; W[hhead + h] = i; // save hash of i in last[i] last[i] = h; } } // finalize |Lk| W[degree + k] = dk; lemax = Math.max(lemax, dk); // clear w mark = _wclear(mark + lemax, lemax, W, w, n); // Supernode detection. Supernode detection relies on the hash function h(i) computed for each node i. // If two nodes have identical adjacency lists, their hash functions wil be identical. for (pk = pk1; pk < pk2; pk++) { i = cindex[pk]; // check i is dead, skip it if (W[nv + i] >= 0) { continue; } // scan hash bucket of node i h = last[i]; i = W[hhead + h]; // hash bucket will be empty W[hhead + h] = -1; for (; i !== -1 && W[next + i] !== -1; i = W[next + i], mark++) { ln = W[len + i]; eln = W[elen + i]; for (p = cptr[i] + 1; p <= cptr[i] + ln - 1; p++) { W[w + cindex[p]] = mark; } var jlast = i; // compare i with all j for (j = W[next + i]; j !== -1;) { var ok = W[len + j] === ln && W[elen + j] === eln; for (p = cptr[j] + 1; ok && p <= cptr[j] + ln - 1; p++) { // compare i and j if (W[w + cindex[p]] !== mark) { ok = 0; } } // check i and j are identical if (ok) { // absorb j into i cptr[j] = csFlip(i); W[nv + i] += W[nv + j]; W[nv + j] = 0; // node j is dead W[elen + j] = -1; // delete j from hash bucket j = W[next + j]; W[next + jlast] = j; } else { // j and i are different jlast = j; j = W[next + j]; } } } } // Finalize new element. The elimination of node k is nearly complete. All nodes i in Lk are scanned one last time. // Node i is removed from Lk if it is dead. The flagged status of nv[i] is cleared. for (p = pk1, pk = pk1; pk < pk2; pk++) { i = cindex[pk]; // check i is dead, skip it if ((nvi = -W[nv + i]) <= 0) { continue; } // restore W[nv + i] W[nv + i] = nvi; // compute external degree(i) d = W[degree + i] + dk - nvi; d = Math.min(d, n - nel - nvi); if (W[head + d] !== -1) { last[W[head + d]] = i; } // put i back in degree list W[next + i] = W[head + d]; last[i] = -1; W[head + d] = i; // find new minimum degree mindeg = Math.min(mindeg, d); W[degree + i] = d; // place i in Lk cindex[p++] = i; } // # nodes absorbed into k W[nv + k] = nvk; // length of adj list of element k if ((W[len + k] = p - pk1) === 0) { // k is a root of the tree cptr[k] = -1; // k is now a dead element W[w + k] = 0; } if (elenk !== 0) { // free unused space in Lk cnz = p; } } // Postordering. The elimination is complete, but no permutation has been computed. All that is left // of the graph is the assembly tree (ptr) and a set of dead nodes and elements (i is a dead node if // nv[i] is zero and a dead element if nv[i] > 0). It is from this information only that the final permutation // is computed. The tree is restored by unflipping all of ptr. // fix assembly tree for (i = 0; i < n; i++) { cptr[i] = csFlip(cptr[i]); } for (j = 0; j <= n; j++) { W[head + j] = -1; } // place unordered nodes in lists for (j = n; j >= 0; j--) { // skip if j is an element if (W[nv + j] > 0) { continue; } // place j in list of its parent W[next + j] = W[head + cptr[j]]; W[head + cptr[j]] = j; } // place elements in lists for (e = n; e >= 0; e--) { // skip unless e is an element if (W[nv + e] <= 0) { continue; } if (cptr[e] !== -1) { // place e in list of its parent W[next + e] = W[head + cptr[e]]; W[head + cptr[e]] = e; } } // postorder the assembly tree for (k = 0, i = 0; i <= n; i++) { if (cptr[i] === -1) { k = csTdfs(i, k, W, head, next, P, w); } } // remove last item in array P.splice(P.length - 1, 1); // return P return P; }; /** * Creates the matrix that will be used by the approximate minimum degree ordering algorithm. The function accepts the matrix M as input and returns a permutation * vector P. The amd algorithm operates on a symmetrix matrix, so one of three symmetric matrices is formed. * * Order: 0 * A natural ordering P=null matrix is returned. * * Order: 1 * Matrix must be square. This is appropriate for a Cholesky or LU factorization. * P = M + M' * * Order: 2 * Dense columns from M' are dropped, M recreated from M'. This is appropriatefor LU factorization of unsymmetric matrices. * P = M' * M * * Order: 3 * This is best used for QR factorization or LU factorization is matrix M has no dense rows. A dense row is a row with more than 10*sqr(columns) entries. * P = M' * M */ function _createTargetMatrix(order, a, m, n, dense) { // compute A' var at = transpose(a); // check order = 1, matrix must be square if (order === 1 && n === m) { // C = A + A' return add(a, at); } // check order = 2, drop dense columns from M' if (order === 2) { // transpose arrays var tindex = at._index; var tptr = at._ptr; // new column index var p2 = 0; // loop A' columns (rows) for (var j = 0; j < m; j++) { // column j of AT starts here var p = tptr[j]; // new column j starts here tptr[j] = p2; // skip dense col j if (tptr[j + 1] - p > dense) { continue; } // map rows in column j of A for (var p1 = tptr[j + 1]; p < p1; p++) { tindex[p2++] = tindex[p]; } } // finalize AT tptr[m] = p2; // recreate A from new transpose matrix a = transpose(at); // use A' * A return multiply(at, a); } // use A' * A, square or rectangular matrix return multiply(at, a); } /** * Initialize quotient graph. There are four kind of nodes and elements that must be represented: * * - A live node is a node i (or a supernode) that has not been selected as a pivot nad has not been merged into another supernode. * - A dead node i is one that has been removed from the graph, having been absorved into r = flip(ptr[i]). * - A live element e is one that is in the graph, having been formed when node e was selected as the pivot. * - A dead element e is one that has benn absorved into a subsequent element s = flip(ptr[e]). */ function _initializeQuotientGraph(n, cptr, W, len, head, last, next, hhead, nv, w, elen, degree) { // Initialize quotient graph for (var k = 0; k < n; k++) { W[len + k] = cptr[k + 1] - cptr[k]; } W[len + n] = 0; // initialize workspace for (var i = 0; i <= n; i++) { // degree list i is empty W[head + i] = -1; last[i] = -1; W[next + i] = -1; // hash list i is empty W[hhead + i] = -1; // node i is just one node W[nv + i] = 1; // node i is alive W[w + i] = 1; // Ek of node i is empty W[elen + i] = 0; // degree of node i W[degree + i] = W[len + i]; } // clear w var mark = _wclear(0, 0, W, w, n); // n is a dead element W[elen + n] = -2; // n is a root of assembly tree cptr[n] = -1; // n is a dead element W[w + n] = 0; // return mark return mark; } /** * Initialize degree lists. Each node is placed in its degree lists. Nodes of zero degree are eliminated immediately. Nodes with * degree >= dense are alsol eliminated and merged into a placeholder node n, a dead element. Thes nodes will appera last in the * output permutation p. */ function _initializeDegreeLists(n, cptr, W, degree, elen, w, dense, nv, head, last, next) { // result var nel = 0; // loop columns for (var i = 0; i < n; i++) { // degree @ i var d = W[degree + i]; // check node i is empty if (d === 0) { // element i is dead W[elen + i] = -2; nel++; // i is a root of assembly tree cptr[i] = -1; W[w + i] = 0; } else if (d > dense) { // absorb i into element n W[nv + i] = 0; // node i is dead W[elen + i] = -1; nel++; cptr[i] = csFlip(n); W[nv + n]++; } else { var h = W[head + d]; if (h !== -1) { last[h] = i; } // put node i in degree list d W[next + i] = W[head + d]; W[head + d] = i; } } return nel; } function _wclear(mark, lemax, W, w, n) { if (mark < 2 || mark + lemax < 0) { for (var k = 0; k < n; k++) { if (W[w + k] !== 0) { W[w + k] = 1; } } mark = 2; } // at this point, W [0..n-1] < mark holds return mark; } function _diag(i, j) { return i !== j; } });