import { factory } from '../../../utils/factory.js'; import { createSolveValidation } from './utils/solveValidation.js'; var name = 'usolveAll'; var dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtract', 'equalScalar', 'DenseMatrix']; export var createUsolveAll = /* #__PURE__ */factory(name, dependencies, _ref => { var { typed, matrix, divideScalar, multiplyScalar, subtract, equalScalar, DenseMatrix } = _ref; var solveValidation = createSolveValidation({ DenseMatrix }); /** * Finds all solutions of a linear equation system by backward substitution. Matrix must be an upper triangular matrix. * * `U * x = b` * * Syntax: * * math.usolveAll(U, b) * * Examples: * * const a = [[-2, 3], [2, 1]] * const b = [11, 9] * const x = usolveAll(a, b) // [ [[8], [9]] ] * * See also: * * usolve, lup, slu, usolve, lusolve * * @param {Matrix, Array} U A N x N matrix or array (U) * @param {Matrix, Array} b A column vector with the b values * * @return {DenseMatrix[] | Array[]} An array of affine-independent column vectors (x) that solve the linear system */ return typed(name, { 'SparseMatrix, Array | Matrix': function SparseMatrixArrayMatrix(m, b) { return _sparseBackwardSubstitution(m, b); }, 'DenseMatrix, Array | Matrix': function DenseMatrixArrayMatrix(m, b) { return _denseBackwardSubstitution(m, b); }, 'Array, Array | Matrix': function ArrayArrayMatrix(a, b) { var m = matrix(a); var R = _denseBackwardSubstitution(m, b); return R.map(r => r.valueOf()); } }); function _denseBackwardSubstitution(m, b_) { // the algorithm is derived from // https://www.overleaf.com/read/csvgqdxggyjv // array of right-hand sides var B = [solveValidation(m, b_, true)._data.map(e => e[0])]; var M = m._data; var rows = m._size[0]; var columns = m._size[1]; // loop columns backwards for (var i = columns - 1; i >= 0; i--) { var L = B.length; // loop right-hand sides for (var k = 0; k < L; k++) { var b = B[k]; if (!equalScalar(M[i][i], 0)) { // non-singular row b[i] = divideScalar(b[i], M[i][i]); for (var j = i - 1; j >= 0; j--) { // b[j] -= b[i] * M[j,i] b[j] = subtract(b[j], multiplyScalar(b[i], M[j][i])); } } else if (!equalScalar(b[i], 0)) { // singular row, nonzero RHS if (k === 0) { // There is no valid solution return []; } else { // This RHS is invalid but other solutions may still exist B.splice(k, 1); k -= 1; L -= 1; } } else if (k === 0) { // singular row, RHS is zero var bNew = [...b]; bNew[i] = 1; for (var _j = i - 1; _j >= 0; _j--) { bNew[_j] = subtract(bNew[_j], M[_j][i]); } B.push(bNew); } } } return B.map(x => new DenseMatrix({ data: x.map(e => [e]), size: [rows, 1] })); } function _sparseBackwardSubstitution(m, b_) { // array of right-hand sides var B = [solveValidation(m, b_, true)._data.map(e => e[0])]; var rows = m._size[0]; var columns = m._size[1]; var values = m._values; var index = m._index; var ptr = m._ptr; // loop columns backwards for (var i = columns - 1; i >= 0; i--) { var L = B.length; // loop right-hand sides for (var k = 0; k < L; k++) { var b = B[k]; // values & indices (column i) var iValues = []; var iIndices = []; // first & last indeces in column var firstIndex = ptr[i]; var lastIndex = ptr[i + 1]; // find the value at [i, i] var Mii = 0; for (var j = lastIndex - 1; j >= firstIndex; j--) { var J = index[j]; // check row if (J === i) { Mii = values[j]; } else if (J < i) { // store upper triangular iValues.push(values[j]); iIndices.push(J); } } if (!equalScalar(Mii, 0)) { // non-singular row b[i] = divideScalar(b[i], Mii); // loop upper triangular for (var _j2 = 0, _lastIndex = iIndices.length; _j2 < _lastIndex; _j2++) { var _J = iIndices[_j2]; b[_J] = subtract(b[_J], multiplyScalar(b[i], iValues[_j2])); } } else if (!equalScalar(b[i], 0)) { // singular row, nonzero RHS if (k === 0) { // There is no valid solution return []; } else { // This RHS is invalid but other solutions may still exist B.splice(k, 1); k -= 1; L -= 1; } } else if (k === 0) { // singular row, RHS is zero var bNew = [...b]; bNew[i] = 1; // loop upper triangular for (var _j3 = 0, _lastIndex2 = iIndices.length; _j3 < _lastIndex2; _j3++) { var _J2 = iIndices[_j3]; bNew[_J2] = subtract(bNew[_J2], iValues[_j3]); } B.push(bNew); } } } return B.map(x => new DenseMatrix({ data: x.map(e => [e]), size: [rows, 1] })); } });